
Exploring 3D-aware Latent Spaces for Efficiently Learning Numerous Scenes

Antoine Schnepf * 1,3 Karim Kassab* 1,2 Jean-Yves Franceschi1 Laurent Caraffa2

Flavian Vasile1 Jeremie Mary1 Andrew Comport3 Valérie Gouet-Brunet2

* Equal contributions
1 Criteo AI Lab, Paris, France

2 LASTIG, Université Gustave Eiffel, IGN-ENSG, F-94160 Saint-Mandé
3 Université Côte d’Azur, CNRS, I3S, France

Abstract

We present a method enabling the scaling of NeRFs to
learn a large number of semantically-similar scenes. We
combine two techniques to improve the required training time
and memory cost per scene. First, we learn a 3D-aware la-
tent space in which we train Tri-Plane scene representations,
hence reducing the resolution at which scenes are learned.
Moreover, we present a way to share common information
across scenes, hence allowing for a reduction of model com-
plexity to learn a particular scene. Our method reduces
effective per-scene memory costs by 44% and per-scene time
costs by 86% when training 1000 scenes. Our project page
can be found at https://3da-ae.github.io .

1. Introduction

The inverse graphics problem has proven to be a challenging
quest in the domain of Computer Vision. While many meth-
ods have historically emerged [9, 21, 24, 25], the question
has mostly remained unchanged: how to model an object or
scene, using only its captured images? While this question
continues to be an active area of research, our work targets a
scaled version of the original problem: how to model abun-
dantly many objects at once? This context is dissimilar to
independently learning scenes, as one could exploit the in-
herent nature of the problem — learning many scenes — to
mitigate per-scene optimization costs. Although modeling
3D objects and scenes from captured images has seen vari-
ous applications (e.g. Virtual Reality, Robotics, Autonomous
Navigation), scaling this problem to large amounts of objects
unlocks new ways in which 3D modeling techniques could
be leveraged (e.g. modeling an inventory of products for
commerce, integrating real artifacts in virtual spaces).

In this paper, we introduce a novel technique enabling the
scaling of the inverse graphics problem. To do so, our work

Inverse G
raphics

3D space

2D image space 2D latent image space
(3D-aware)

3D latent space

R
ender

Figure 1. 3D-aware latent space. We draw inspiration from the
relationship between the 3D space and image space and introduce
the idea of a 3D latent space. We propose a 3D-aware autoencoder
that encodes images into a 3D-aware (2D) latent image space, in
which we train our scene representations.

aims to compress scene representations to model only essen-
tial information within a particular scene. To achieve this, we
build on two main ideas: we learn a 3D-aware (2D) latent
space in which we train our scene representations, and we
introduce cross-scene feature sharing to avoid redundantly
learning similar information.

Latent spaces enable the representation of high-
resolution RGB images in a compact form, through the pro-
cess of encoding and decoding. Particularly, Auto-Encoders
(AEs) learn a lower-dimensional latent space able to capture
the underlying structure and diversity of a dataset of images.
However, as their optimization is devoid of geometrical con-
straints, latent spaces generally lack 3D structure, which
is particularly crucial in 3D applications as this promotes

https://3da-ae.github.io


a discrepancy between the latent space and the real world
images it represents. One particular downfall of this discrep-
ancy is the absence of 3D-consistency between two latent
images encoding two 3D-consistent images. In this work,
we present a novel approach to regularize a latent space with
geometric constraints by leveraging Tri-Planes representa-
tions [5]. This not only adds 3D consistency to the latent
space, but also enables the use of recent neural rendering
techniques within this latent space, which accelerates their
optimization and rendering times, and lowers their memory
footprint. Fig. 1 illustrates the intuition behind our 3D latent
space, and the analogy with the natural 3D space.

To go further, we also minimize the amount of informa-
tion we learn per scene representation by introducing the
notion of globally shared representations. Here, we train
M representations that are shared among scenes, and that
learn global information about the scenes within the dataset
at hand. This avoids learning redundant information across
scenes and hence minimizes both the per-scene compute
time and memory cost when learning numerous scenes.

A summary of our contribution can be found below:
• We build a 3D-aware latent space in which neural scene

representations can be trained,
• We present an approach to minimize the capacity needed to

model a latent scene by sharing common globally-trained
scene representations across scenes,

• Our work can learn 1000 scenes with 86% less time and
44% less memory than our base representation.

2. Related Work
NeRF resource reductions. Neural Radiance Fields [21,
NeRF] achieve impressive performances on the task of Novel
View Synthesis (NVS) by adopting a purely implicit rep-
resentation to model scenes. On one end of the spectrum,
some NeRF methods [2, 3] achieve exceptional quality while
requiring low memory capacity to store scenes, as they rep-
resent scenes through the weights of neural networks. This
however comes with the sacrifice of high training and ren-
dering times due to bottlenecks in volume rendering. To al-
leviate these issues, some representations trade-off compute
time for memory usage by explicitly storing proxy features
for the emitted radiances and densities in a 3D data structure
(e.g. voxel based representations [8, 23, 29, 34] or plane-
based representations [4, 5, 12]). This allows for the use of
a significantly smaller neural network as compared to purely
implicit representations. On the other end of the spectrum,
Fridovich-Keil et al. [11], Kerbl et al. [14] completely forgo
the use of neural networks, achieving real-time rendering,
but at high memory costs.

In contrast to previous works, we propose a method or-
thogonal to the aforementioned spectrum and sidestepping
the time-memory trade-off; by accelerating scene learning
all the while lowering the memory footprint of individual

scenes. This is partly done by training our scene representa-
tions on a compressed version of training images. To do so,
we present a novel 3D-aware latent feature space.

Neural Feature Fields. Neural Feature Fields extend
Neural Radiance Fields to render feature images instead
of color images, while using the same volume rendering
equations. First methods exploring feature fields propose
the 3D distillation of features by jointly training a radiance
field and a feature field. This allows for modeling an indi-
vidual scene in a feature field rather than a radiance field.
This is particularly interesting, as this representation unlocks
many subsequent applications, like 3D object detection and
segmentation [31], 3D editing [16, 18] and semantic under-
standing of scenes [15, 19]. Metzer et al. [20], Seo et al. [27]
train a feature field that renders in the latent space of Stable
Diffusion [26]. These feature fields are optimized such that
their renderings match the posterior distribution of Stable
Diffusion under a descriptive text prompt, hence enabling
text-to-3D generation. Chan et al. [6], Ye et al. [32], Yu
et al. [33] use a pre-trained encoder to generate feature fields
from single images, hence enabling single-image-to-3D gen-
eration. Aumentado-Armstrong et al. [1] are closest to our
work, as they model individual scenes in a latent feature
space with a decoder neural network, thus accelerating vol-
ume rendering thanks to the reduced latent-space dimension.
However, this training is individually done for each scene,
and no common latent space is learned across scenes.

Our work expands [1] in a different scope, more particu-
larly by leveraging both an encoder and a decoder to learn
a common 3D-consistent latent space in which numerous
scene representations can be trained.

Meta-Learning base networks for INRs. To reduce
model complexity, previous works have explored learning
and modulating shared base networks to represent common
structure within a set of signals modeled by Implicit Neu-
ral Representations (INRs). More particularly, to create a
functaset of NeRFs, Dupont et al. [10] learn a shared base
network thanks to which NeRFs can be trained by only opti-
mizing modulations of the base network. Our work draws
inspiration from this and introduces global Tri-Planes, which
consist of shared scene representations storing common in-
formation and structure across a set of scenes. This enables
in our case the reduction of per-scene model complexity.
Previous works have also shown that meta-learning such
shared networks enables fitting Neural Radiance Fields and
Signed Distance Functions in only a few optimization steps
[28, 30]. More generally, previous works have also shown
the advantage of learning priors over a subset of scenes.
[10, 17, 22, 25]. Our work parallels this by pre-training parts
of our pipeline on the training set, hence learning a prior
over the scene distribution before applying it on new scenes.



(a)

Volume
Rendering Tiny MLPVolume

Rendering Tiny MLP

(b)

Volume
Rendering Tiny MLP

(c)

Figure 2. Methods for learning scenes in a 3D-aware latent space. Diagrams for (a) Encode-Scene, (b) Decode-Scene, and (c) Encode-
Decode-Scene, the proposed methods to train Tri-Plane scene representations in a 3D-aware latent space.

3. Method

In this section, we present the main components of our
method and elucidate the intuition behind our choices. We
start by presenting three methods with which one could train
a scene representation in a 3D-aware latent space: Encode-
Scene, Decode-Scene, and Encode-Decode-Scene. We
subsequently present our 3D-aware Autoencoder (3Da-AE)
which builds upon these methods to learn a 3D-aware la-
tent space. We also present Micro-Macro representations,
which constitute an additional component in our pipeline
that further accelerates training while lowering its memory
footprint thanks to information sharing. Finally, we show
how to use 3Da-AE and Micro-Macro Tri-Planes to solve
the problem of learning numerous scenes.

3.1. Prerequisites

Autoencoder. An autoencoder (AE) is a compression
model trained to learn efficient, low-resolution represen-
tations of images. To achieve this, the model is trained via
a reconstruction loss where images are passed through an
information bottleneck:

z = Eψ(x) ,

x̂ = Dϕ(z) ,

Lae(ψ, ϕ) = Ex∥x− x̂∥22 ,
(1)

where x is an image, Eψ and Dϕ respectively represent the
encoder and decoder with trainable parameters ψ and ϕ, and
z has a lower resolution than x. In this work, we use the

autoencoder of Stable Diffusion [26] as a baseline. It works
with a large range of input image resolutions, while reducing
the resolution by a factor of 64 in the latent space.

3D consistency. The notion of 3D consistency refers
to the underlying 3D geometry of 2D images. Formally,
3D consistency involves ensuring that corresponding points
or features in different images represent the same physical
point or object in the scene, despite variations in viewpoint,
lighting or occlusion. Note that while 3D consistency is
natural for a set of posed images Xs = {p, xp}p∈P obtained
from a scene s in the image space, it does not naturally
extend to the latent space, as latent representations of two 3D-
consistent images are not necessarily 3D consistent (Fig. 3,
bottom row).

Tri-Plane representation. Tri-Plane representations [5]
are explicit-implicit scene representations enabling scene
modeling in three axis-aligned orthogonal feature planes,
each of resolution T×T with feature dimension F . To query
a 3D point x ∈ R3, it is projected onto each of the three
planes to retrieve bilineraly interpolated feature vectors Fxy ,
Fxz and Fyz . These feature vectors are then aggregated via
summation and passed into a small neural network to retrieve
the corresponding color and density, which are then used for
volume rendering [13]. We adopt Tri-Plane representations
for their relatively fast training times, as well as their explicit
nature enabling their modularity, an essential property for
our Micro-Macro decomposition (Sec. 3.4).



Figure 3. Latent space comparison. Top: ground truth image.
Middle: latent image obtained with the 3D-aware encoder. Bottom:
latent image obtained with the baseline encoder. Qualitative results
show that our 3D-aware encoder better preserves 3D consistency
and geometry in the latent space.

3.2. Latent NeRFs

We define a latent scene representation similarly to a clas-
sical scene representation, except that it is trained on latent
encodings of the scene images. In this section, we assume
the existence of a 3D-aware latent space, and present three
approaches to learn latent scene representations: Encode-
Scene, Decode-Scene, and Encode-Decode-Scene, respec-
tively utilizing the encoder, decoder and both modules of a
3D-aware autoencoder. Fig. 2 illustrates these methods.

3.2.1 Encode-Scene

Encode-Scene takes the most similar approach compared to
classical NeRF training in order to train NeRFs in a latent
space. It is a two-step process where latent images are first
obtained from training images using the encoder, and are
then used to train the latent NeRF with the usual NeRF
photometric loss:

min
α,T
LE(α, T ) ≜ Exp

∥E(xp)−Rα(T, p)∥ , (2)

where E(xp) is the encoding of an image xp with camera
pose p, andRα(T, p) represents the rendered image from the
Tri-Plane T queried at pose p. Note that the main advantage
of this approach is its accelerated training and rendering
procedures, as all the training images can be encoded into
their latent representations once, and then cached. As these
latent representations are 64 times smaller in resolution, the
rendering algorithm has to query 64 times less pixels, which
greatly accelerates rendering and hence the training.

3.2.2 Decode-Scene

Decode-Scene takes a different approach to train NeRFs in
the latent space. Here, we use the decoder and supervise the
pipeline with RGB images, all while keeping the NeRF in

(a) Standard AE (b) 3D-aware AE

Figure 4. Latent scenes comparison. Visualization of Tri-Planes
renderings and their corresponding decodings after learning scenes
in the latent space of a standard AE and our 3D-aware AE. All
Tri-Planes are trained using the Encode-Scene pipeline.

the latent space. More particularly, the NeRF here is tasked
to find a 3D-consistent latent object that, when rendered into
latent images, decodes to its corresponding RGB images.
Hence, the NeRF here is supervised via a photometric loss
computed in the RGB space:

min
α,T
LD(α, T ) ≜ Exp

∥xp −D(Rα(T, p))∥ , (3)

where D represents the decoder. While rendering is still
applied in the latent space in Decode-Scene, this is generally
a slower method compared to Encode-Scene. This is because
no latent images can be cached, and a gradient step requires
differentiation through all the parameters of the decoder.

3.2.3 Encode-Decode-Scene

Encode-Decode-Scene is a mixture of the former approaches,
where both LE and LD are used to train the latent NeRF:

min
α,T

(1− t)LD(α, T ) + tLE(α, T ) , (4)

where t ∈ (0, 1). This method takes the best of both worlds
by supervising both the rendered latent and the decoded
image to train a scene representation, ensuring good latent
scene representations and high-fidelity color images.

Qualitative results obtained when training Tri-Planes with
the baseline AE and our 3D-aware AE are illustrated in Fig. 4.
While learning scenes in a standard latent space is feasible,
it results in poor scene quality, as the latent images used for
inverse graphics are not 3D-consistent (Fig. 3, bottom row).

3.3. 3D-aware AE for a 3D-aware latent space

As presented, NeRFs trained in a standard latent space suffer
from its 3D inconsistencies. To fix this issue, we fine-tune the
autoencoder of Stable Diffusion [26] to obtain a 3D-aware
Autoencoder (3Da-AE).

To enforce 3D consistency in the latent space, we regu-
larize it by training NeRFs on its latent images. Intuitively,
this encourages the encoder and the decoder to preserve 3D



... ...

Volume
Rendering Tiny MLP

Figure 5. 3Da-AE training. We learn a 3D-aware latent space by regularizing its training with 3D constraints. To this end, we jointly train
the encoder Eϕ, the decoder Dψ and N scenes in this latent space. For each scene s, we learn a Tri-Planes representation Ts, built from the
concatenation of local Tri-Planes Tmics and global Tri-Planes Tmacs . Tmics is retrieved via a one-hot vector es from a set of scene-specific
planes stored in memory. Tmacs is computed from a summation of M globally shared Tri-Planes, weighted with weights Ws.

consistency, thanks to the NeRF’s innate 3D-consistent na-
ture. To do so, we present a joint training process where we
optimize Ntrain Tri-Planes modeling latent scenes, as well
as the encoder and decoder. Fig. 3 (middle row) illustrates
the preservation of consistency of our method.

To achieve this joint training, we implement three losses,
inspired from Sec. 3.2, in order to simultaneously train the
encoder, the decoder, as well as the latent NeRFs. First, an
autoencoder preservation loss Lae ensures the correct recon-
struction of images after encoding and decoding. Second,
LEnc reassembles LE from Encode-Scene, but additionally
supervises the encoder so that it produces 3D consistent
latent images. Third, LDec reassembles LD from Decode-
Scene, but additionally trains the decoder to ensure that two
3D-consistent latent images are decoded into their corre-
sponding 3D-consistent RGB images. Hence, the training
objective for the 3Da-AE is written as:

min
ϕ,ψ,α,T

λaeLae(ϕ, ψ) + λEncLEnc(ϕ, α, T )

+ λDecLDec(ψ, α, T ) ,

with


Lae(ϕ, ψ) = Exp

∥xp −Dψ(Eϕ(xp))∥ ,
LEnc(ϕ, α, T ) = Exp

∥Eϕ(xp)−Rα(T, p)∥ ,
LDec(ψ, α, T ) = Exp∥xp −Dψ(Rα(T, p))∥ ,

(5)

where ϕ, ψ and α are shared parameters among all scenes. T
consists of Tri-Plane parameters which we divide into scene-
specific local parameters and globally-shared computed pa-
rameters. For an overview of the full 3Da-AE pipeline, we
refer the reader to Fig. 5.

3.4. Micro-Macro Tri-Plane Decomposition

In this section, we present an additional approach to reduce
the capacity needed to learn individual scenes through Tri-
Plane scene representations. As most of our scenes share
similar structure, we sidestep repeatedly learning redundant
information across scenes by integrating globally shared in-
formation into our scene representations, and modulating
this shared information via scene-dependent weights. While
learning scenes in the latent space achieves complexity re-
ductions through minimizing spatial resolutions, we aim to
achieve this here by decomposing a scene representation into
“globally” shared information and “locally” learned features.

Formally, we decompose a Tri-Plane representation Ts
modeling a scene s into a locally trained Tri-Plane represen-
tation Tmic

s and a globally learned representation Tmac
s :

Ts = Tmic
s ⊕ Tmac

s , (6)

where ⊕ concatenates two Tri-Planes along the feature di-
mension. We denote by Fmic the number of local feature



Algorithm 1: 3Da-AE Training.
Input: Xtrain, Eϕ, Dψ ,Rα, N , λae, λEnc, λDec,

optimizer
Random initialization: Tmic,W, Tmac

1 for N steps do
2 for {s, p, xp} in shuffle(Xtrain) do

// Compute local planes

3 Tmic
s , Tmac

s ← esT
mic , WsB

4 Ts ← Tmic
s ⊕ Tmac

s

// Encode, Decode, Render

5 zp ← Eϕ(xp)
6 x̂p ← Dψ(zp)
7 z̃p ← Rα(Ts, p)
8 x̃p ← Dψ(z̃p)

// Compute losses and optimize

9 Lae ← ∥xp − x̂p∥22
10 LEnc ← ∥zp − z̃p∥22
11 LDec ← ∥xp − x̃p∥22
12 L ← λaeLae + λEncLEnc + λDecLDec

13 Tmics ,Ws, B, α, ϕ, ψ ← optimizer.step(L)

in Tmic
s and by Fmac the number of global feature in Tmac

s ,
with the total number of feature F = Fmic + Fmac.

For Tmac
s to represent globally captured information, it

is computed for each scene from globally learned Tri-Plane
representations {Bi}Mi=1 by the means of a weighted sum:

Tmac
s =WsB =

M∑
i=1

wisBi , (7)

where Ws are learned coefficients for scene s, and Bi are
jointly trained with every scene. This approach accelerates
our method and reduces its memory footprint, as we asymp-
totically reduce the number of trainable features by a factor
of Fmac

Fmic+Fmac .

3.5. Scaling 3Da-AE

In order to leverage our 3Da-AE pipeline to train a large
number of NeRFs, we utilize the ideas presented in Secs. 3.3
and 3.4 within two stages: “Training 3Da-AE” (Sec. 3.5.1)
and “Exploiting 3Da-AE” (Sec. 3.5.2). The objective of the
first stage is to train 3Da-AE and the global planes in order
to obtain our 3D-aware latent space. The goal in the second
stage is to learn numerous scenes by using the 3D-aware
latent space obtained in the first step, as well as the global
planes. We detail the two stages in the following sections.

3.5.1 Training 3Da-AE

In this stage, we learn a 3D-aware autoencoder. Our training
dataset Xtrain = {(s, p, xp)}s∈S, p∈P , where S denotes the
set of scene indices and P the set of poses, is composed of

Algorithm 2: 3Da-AE Exploitation.
Input: Xexploit, Eϕ, Dψ , B,Rα, N1, N2, optimizer
Random initialization: Tmic,W
// Encode-Scene

1 for N1 steps do
2 for {s, p, xp} in shuffle(Xexploit) do

// Compute local planes

3 Tmic
s , Tmac

s ← esT
mic , WsB

4 Ts ← Tmic
s ⊕ Tmac

s

// Encode, Render

5 zp ← Eϕ(xp)
6 z̃p ← Rα(Ts, p)

// Compute losses and optimize

7 LE ← ∥zp − z̃p∥22
8 Tmics ,Ws, B, α← optimizer.step(LE)
// Decoder finetuning

9 for N2 steps do
10 for {s, p, xp} in shuffle(Xexploit) do

// Compute local planes

11 Tmic
s , Tmac

s ← esT
mic , WsB

12 Ts ← Tmic
s ⊕ Tmac

s

// Encode, Decode, Render

13 z̃p ← Rα(Ts, p)
14 x̃p ← Dψ(z̃p)

// Compute losses and optimize

15 LDec ← ∥xp − x̃p∥22
16 Tmics ,Ws, B, α, ψ ← optimizer.step(LDec)

Ntrain scenes from ShapeNet [7]. We initialize the local Tri-
Planes {Tmic

s }s∈S , as well as our global Tri-Planes {Bi}Mi=1

and the scene-specific coefficients {Ws}s∈S . For each scene
s, we compute the corresponding representation Ts with the
Micro-Macro decomposition (Eq. (7)).

Given a posed image (p, xp) of a scene s, we use the
autoencoder to obtain the latent image zp and reconstructed
image x̂p. Subsequently, we render the triplane Ts from
pose p to obtain the rendered latent z̃p, which we decode
to obtain x̃p. The losses Lae, LDec and LEnc are estimated
on a mini-batch and used to optimize the encoder, decoder,
local Tri-Planes, global Tri-Planes and the scene-specific
coefficients. Algorithm 1 details our training procedure.

Note that in practice, we begin this training with a
warmup stage, during which only the local triplanes, global
triplanes, and scene-specific coefficients are optimized. Here,
we keep the autoencoder frozen as random gradients would
back-propagate into Eϕ and Dψ .

3.5.2 Exploiting 3Da-AE

In this stage, we learn scenes using the 3D-aware latent
space and the global Tri-Planes obtained in the former stage.
Our exploitation dataset Xexploit is composed of Nexploit



tscene
(min)

teffscene
(min)

mscene

(MB)
meff

scene

(MB)
Rendering
Time (ms)

Rendering
Resolution

Encoder — — 0 0.13 — —
Decoder — — 0 0.19 9.7 128× 128

Tri-Planes (RGB) 32 32 1.5 1.5 23.3 128× 128
Our method 2 4.5 0.48 0.84 11.0 128× 128

Table 1. Cost comparison. Per scene cost comparison with Tri-Planes trained in the image space. Here, we consider Ntrain = 500,
Nexploit = 1000, tEC = 40 hours, M = 50 , Fmac = 22. Our method reduces the effective training time by 86% per scene, and the
effective memory cost by 44% per scene.

0 1 2 3 4 5

10

15

20

25

P
S

N
R

47.5 50.0

RGB

Ours - Encode-LN

Ours - Decoder finetune

Train time (hours)

Figure 6. Quality evolution. Evolution of the average test-view
PSNR demonstrated in the exploit phase of our method compared
to RGB Tri-Planes (Nexploit = 100). Our method achieves compa-
rable quality in less training time.

scenes. We start by randomly initializing our local Tri-Planes
and training our scene representations with Encode-Scene.
Finally, to maximize the quality of the decoded RGB images,
we finish this stage by a small fine-tuning of the decoder with
anLDec loss, similarly to Decode-Scene, but with a trainable
decoder. Algorithm 2 details our exploitation procedure.

4. Experiments
In this section, we present the resource costs and quality
evaluations of our method. We also present an ablation study
to assess the added value of each element of our pipeline.

Dataset. We adopt the ShapeNet-Cars [7] dataset. Each
scene s is rendered at resolution 128×128 with 200 different
camera poses, from which we take 90% for training and 10%
for testing. We use two subsets of scenes respectively for
training our 3Da-AE, and exploiting it to learn numerous
scenes. For each scene, we divide the views into train and test
views as to evaluate the NVS performances of our method.

Implementation details. We train the 3Da-AE on
Ntrain = 500 scenes from ShapeNet-Cars. For the exploita-
tion phase, we learn Nexploit = 1000 scenes. For all our
experiments, we take Fmic = 10, Fmac = 22, and M = 50.

0 200 400 600 800 1000

Nexploit

0

100

200

300

400

500

t t
ot

(h
ou

rs
)

Tri-Planes

Our method

Figure 7. Time cost evolution. Total train time evolution when
scaling the number of trained scenes Nexploit. The entry training
cost tEC is taken into account. Our method demonstrates more
favorable scalability properties as compared to Tri-Planes (RGB).

4.1. Resource costs

In this section, we detail the resource costs in terms of time
and memory of the various stages of our method, and illus-
trate how we compare it to classical Tri-Plane training.

Time costs. As presented, our method starts by warm-
ing up the Tri-Planes and training the 3Da-AE with Ntrain

scenes, for which we respectively allocate the times twarmup
train

and ttrain. Subsequently, we exploit the 3Da-AE to train
Nexploit scenes. We call texploit and tftexploit respectively the
time to train the Tri-Planes in the exploit phase, and the time
to fine-tune the decoder at the end of this phase. Note that
twarmup
train and ttrain represent a time entry cost for our method,

as this training is done only once, and it is independent of
the number of scenes Nexploit which we wish to learn. We
denote this entry cost time by tEC = twarmup

train + ttrain . Thus,
our total training time is written as:

ttot = tEC +Nexploittscene , (8)

where tscene = 1
Nexploit

(texploit+t
ft
exploit) is the training time

per scene in the exploit phase. Finally, for a fair comparison
to training in the RGB space, we define teffscene, the effective
time taken per scene in our method. This takes into account



Experiment Late
nt

Spa
ce

M
icr

o-P
lan

es

M
ac

ro-
Plan

es

Trai
n sce

ne
s

Exp
loi

t s
ce

ne
s

Ours-Micro ✓ ✓ ✗ 26.52 26.95
Ours-Macro ✓ ✗ ✓ 25.67 26.10
Tri-Planes-Macro (RGB) ✗ ✗ ✓ 27.84 28.00

Tri-Planes (RGB) ✗ ✓ ✗ 28.24 28.40
Ours-No-Prior ✓ ✓ ✓ 27.72 28.13
Ours ✓ ✓ ✓ 28.05 28.48

Table 2. Quality comparison. Average PSNR demonstrated by
our method with a comparison to Tri-Planes and ablations of our
pipeline. All metrics are computed on never-seen test views. Here,
we consider Ntrain = 500, Nexploit = 100, and M = 50. For
compute constraints, Tri-Planes metrics are averaged on 50 scenes.

tEC, the entry cost to our method. teffscene is written as:

teffscene =
tEC

Nexploit
+ tscene . (9)

Indeed, our method is more beneficial when Nexploit is large.

Memory costs. In terms of memory footprint, our method
presents an advantage compared to its baseline as it requires
less local Tri-Plane features per scene. We denote mE , mD

and mB , the memory size required to respectively save the
encoder, decoder, and the global planes. We also define
mEC = mE+mD+mB , the memory entry cost needed for
our method. Additionally, saving the scenes requires saving
their local Tri-Planes of size mT and their coefficients of
size mW . Thus, our total memory footprint is written as:

mtot = mEC +Nexploitmscene , (10)

where mscene = 1
Nexploit

(mT + mW ) is the memory size
needed to save one scene. Lastly, we define meff

scene, the
effective memory size needed per scene, taking into account
the entire pipeline. meff

scene is written as:

meff
scene =

mEC

Nexploit
+mscene . (11)

Similarly to the time costs, our method is also more advanta-
geous with larger Nexploit.

4.2. Evaluations

We apply our exploitation phase on two sets of scenes:
scenes from the training set, and held-out scenes from the ex-
ploit set. We compare our results with a classical training of
Tri-Planes in the image space, denoted “Tri-Planes (RGB)”.
For a fair comparison, we use the same plane resolutions
T = 64 and the same number of plane features F = 32 in all
our experiments. All results are obtained on never-seen test

(a) Tri-Planes (RGB) (b) Ours (c) Ground truth

Figure 8. Visual comparison. Visual comparison of novel view
synthesis quality for our method and Tri-Planes (RGB).

views belonging to scenes coming from both the train and
exploit sets. Note that, due to compute constraints, we only
train Tri-Planes (RGB) on a reduced version of the datasets.

Results. As seen in Tabs. 1 and 2 and Fig. 6, our method
reach the same PSNR as Tri-Planes (RGB) while reducing
the the training time by 86% and the memory cost by 44%
when training Nexploit = 1000 scenes. In addition, render-
ing novel views using our latent Tri-Planes requires 53% less
time. Qualitatively, Fig. 8 compares the novel view synthesis
quality of our method with Tri-Planes (RGB) and ground
truth test views. Additionally, Fig. 7 shows how our method
scales in training time compared to Tri-Planes (RGB).

4.3. Ablations

To justify our choices and explore further, we present an abla-
tion study of our method. The first ablation, “Ours-Micro”,
eliminates the Micro-Macro decomposition, and conse-
quently global information sharing (i.e. Fmac = 0 , Fmic =
F ). The second ablation, “Ours-Macro”, eliminates local
features from Tri-Planes and relies only on global features
(i.e. Fmic = 0 , Fmac = F ). The third ablation, “Tri-
Planes-Macro” exclusively trains globally shared Tri-Planes
in the image space instead of the latent space. Finally, “Ours-
No-Prior” refers to an ablation where we reset our globally
shared Tri-Planes before the exploitation phase. Note that
ablating the latent space as well as information sharing is
equivalent to the vanilla “Tri-Planes (RGB)” setting. The
results of our ablation study can be found in Tab. 2.

5. Conclusion
In this paper, we introduce a novel approach for efficiently
learning abundantly many scenes. We propose a 3D-aware
autoencoder that enables the training of scene representa-
tions in its latent space, drastically speeding-up rendering
and training times. Additionally, we present a Micro-Macro
Tri-Planes scene decomposition enabling cross-scene infor-
mation sharing and lighter scene representations. We show
that our pipeline reduces resource costs required to learn an
individual scene in both time and memory, while showing no
quality loss. We envision this work as an essential milestone
towards a foundation 3D-aware latent space.



References
[1] Tristan Aumentado-Armstrong, Ashkan Mirzaei, Marcus A

Brubaker, Jonathan Kelly, Alex Levinshtein, Konstantinos G
Derpanis, and Igor Gilitschenski. Reconstructive latent-space
neural radiance fields for efficient 3d scene representations.
arXiv preprint arXiv:2310.17880, 2023. 2

[2] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-NeRF: A multiscale representation for anti-aliasing neu-
ral radiance fields, 2021. 2

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
Anti-Aliased Neural Radiance Fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5470–5479, 2022. 2

[4] Ang Cao and Justin Johnson. HexPlane: A Fast Representa-
tion for Dynamic Scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 130–141, 2023. 2

[5] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J.
Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and
Gordon Wetzstein. Efficient Geometry-Aware 3D Generative
Adversarial Networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 16123–16133, 2022. 2, 3

[6] E. R. Chan, K. Nagano, M. A. Chan, A. W. Bergman, J.
Park, A. Levy, M. Aittala, S. De Mello, T. Karras, and G.
Wetzstein. Generative novel view synthesis with 3d-aware
diffusion models. In 2023 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 4194–4206, Los
Alamitos, CA, USA, 2023. IEEE Computer Society. 2

[7] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. ShapeNet: An Information-Rich 3D Model Repos-
itory. Technical Report arXiv:1512.03012 [cs.GR], Stanford
University — Princeton University — Toyota Technological
Institute at Chicago, 2015. 6, 7

[8] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. TensoRF: Tensorial Radiance Fields. In European
Conference on Computer Vision (ECCV), 2022. 2

[9] Michael F. Cohen and Richard Szeliski. Lumigraph, pages
462–467. Springer US, Boston, MA, 2014. 1

[10] Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami,
Danilo Jimenez Rezende, and Dan Rosenbaum. From data to
functa: Your data point is a function and you can treat it like
one. In Proceedings of the 39th International Conference on
Machine Learning, pages 5694–5725. PMLR, 2022. 2

[11] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance Fields Without Neural Networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5501–5510, 2022. 2

[12] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk War-
burg, Benjamin Recht, and Angjoo Kanazawa. K-Planes:
Explicit Radiance Fields in Space, Time, and Appearance.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 12479–12488,
2023. 2

[13] James T. Kajiya and Brian Von Herzen. Ray tracing volume
densities. Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, 1984. 3

[14] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3D Gaussian Splatting for Real-Time Radi-
ance Field Rendering. ACM Transactions on Graphics, 42(4),
2023. 2

[15] J. Kerr, C. Kim, K. Goldberg, A. Kanazawa, and M. Tancik.
Lerf: Language embedded radiance fields. In 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
19672–19682, Los Alamitos, CA, USA, 2023. IEEE Com-
puter Society. 2

[16] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann.
Decomposing nerf for editing via feature field distillation. In
Advances in Neural Information Processing Systems, pages
23311–23330. Curran Associates, Inc., 2022. 2

[17] Adam R Kosiorek, Heiko Strathmann, Daniel Zoran, Pol
Moreno, Rosalia Schneider, Sona Mokra, and Danilo Jimenez
Rezende. Nerf-vae: A geometry aware 3d scene generative
model. In Proceedings of the 38th International Conference
on Machine Learning, pages 5742–5752. PMLR, 2021. 2

[18] Verica Lazova, Vladimir Guzov, Kyle Olszewski, Sergey
Tulyakov, and Gerard Pons-Moll. Control-nerf: Editable
feature volumes for scene rendering and manipulation. In
Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), pages 4340–4350, 2023.
2

[19] Nur Muhammad Mahi Shafiullah, Chris Paxton, Lerrel Pinto,
Soumith Chintala, and Arthur Szlam. Clip-fields: Weakly
supervised semantic fields for robotic memory. arXiv e-prints,
pages arXiv–2210, 2022. 2

[20] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and
Daniel Cohen-Or. Latent-NeRF for Shape-Guided Generation
of 3D Shapes and Textures. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12663–12673, 2023. 2

[21] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View Syn-
thesis. In ECCV, 2020. 1, 2

[22] Pol Moreno, Adam R. Kosiorek, Heiko Strathmann, Daniel
Zoran, Rosalia Galiazzi Schneider, Björn Winckler, Larisa
Markeeva, Theophane Weber, and Danilo Jimenez Rezende.
Laser: Latent set representations for 3d generative modeling,
2023. 2

[23] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant Neural Graphics Primitives with a Multires-
olution Hash Encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 2

[24] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable Volumetric Rendering: Learn-
ing Implicit 3D Representations Without 3D Supervision.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 1



[25] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. DeepSDF: Learning Contin-
uous Signed Distance Functions for Shape Representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 1, 2

[26] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-Resolution Image
Synthesis With Latent Diffusion Models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022. 2, 3, 4

[27] Hoigi Seo, Hayeon Kim, Gwanghyun Kim, and Se Young
Chun. Ditto-nerf: Diffusion-based iterative text to omni-
directional 3d model. arXiv preprint arXiv:2304.02827, 2023.
2

[28] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely,
and Gordon Wetzstein. Metasdf: Meta-learning signed dis-
tance functions. In Advances in Neural Information Process-
ing Systems, pages 10136–10147. Curran Associates, Inc.,
2020. 2

[29] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. CVPR, 2022. 2

[30] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi
Schmidt, Pratul P. Srinivasan, Jonathan T. Barron, and Ren
Ng. Learned initializations for optimizing coordinate-based
neural representations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 2846–2855, 2021. 2

[31] Vadim Tschernezki, Iro Laina, Diane Larlus, and Andrea
Vedaldi. Neural feature fusion fields: 3d distillation of self-
supervised 2d image representations. In 2022 International
Conference on 3D Vision (3DV), pages 443–453, 2022. 2

[32] J. Ye, N. Wang, and X. Wang. Featurenerf: Learning gen-
eralizable nerfs by distilling foundation models. In 2023
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 8928–8939, Los Alamitos, CA, USA, 2023.
IEEE Computer Society. 2

[33] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
https://arxiv.org/abs/2012.02190, 2020. 2

[34] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
5752–5761, 2021. 2


	. Introduction
	. Related Work
	. Method
	. Prerequisites
	. Latent NeRFs
	Encode-Scene
	Decode-Scene
	Encode-Decode-Scene

	. 3D-aware AE for a 3D-aware latent space
	. Micro-Macro Tri-Plane Decomposition
	. Scaling 3Da-AE
	Training 3Da-AE
	Exploiting 3Da-AE


	. Experiments
	. Resource costs
	. Evaluations
	. Ablations

	. Conclusion

