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Figure 1. Qualitative comparison of our method with various baselines under 5 different experimental setups. Our method renders target
views in a low-resolution latent space and operates over all camera rays jointly. It produces significantly better geometries and textures
than previous sparse and generalizable methods, which render light rays independently and typically suffer from grainy artifacts.

Abstract

A recent trend among generalizable novel view synthesis
methods is to learn a rendering operator acting over sin-
gle camera rays. This approach is promising because it
removes the need for explicit volumetric rendering, but it
effectively treats target images as collections of indepen-
dent pixels. Here, we propose to learn a global render-
ing operator acting over all camera rays jointly. We show
that the right representation to enable such rendering is the
5-dimensional plane sweep volume, consisting of the pro-
jection of the input images on a set of planes facing the tar-
get camera. Based on this understanding, we introduce our
Convolutional Global Latent Renderer (ConvGLR), an effi-
cient convolutional architecture that performs the rendering
operation globally in a low-resolution latent space. Exper-
iments on various datasets under sparse and generalizable
setups show that our approach consistently outperforms ex-
isting methods by significant margins.

1. Introduction

Significant progress has been made on novel view synthesis
in recent years, both in terms of image quality and render-
ing speed [2, 3, 6, 15, 30, 42, 43]. However, a lot of this
progress has focused on the scene-specific formulation of
the problem, where models are trained to fit one scene. We
are interested here in the generalizable formulation, where
novel views of unknown scenes can be rendered directly
from a set of posed input views [5, 41, 63, 70, 76].

This generalizable formulation is challenging because
it requires to reason about the geometry of the scene for
each target image, instead of solving the geometry prob-
lem as a preliminary step. It also typically relies on a
much sparser number of input views (3 to 16 here) while
the scene-specific formulation routinely uses 100s of input
views. However, we believe that it is ultimately more pow-
erful because 1) sparse setups are common in real world
applications [11, 18, 44] and 2) it provides the ability to
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reason about unkown environments and could pave the way
for the training of large scale 3D vision models [12]. Most
recent works on generalizable novel view synthesis learn
to predict 5D radiance fields based on some form of geo-
metric reasoning before applying volumetric rendering; a
fixed operation consisting in integrating the radiance over
light rays [5, 28, 70, 76]. A recent development is to use
a 4D light field approach and predict the color of camera
rays directly, effectively learning the rendering operation it-
self [12, 63, 64]. This later approach is promising because
it removes the need for explicit volumetric rendering but so
far, it is still implemented on a single-ray basis.

In this work, we adopt a 4D light field approach and
learn a global rendering operator acting over all camera
rays jointly. We achieve this by revisiting plane sweep vol-
umes (PSVs), obtained by projecting the input views on a
set of planes distributed parallel to the target image plane.
In particular, we observe that PSVs implicitly encode the
epipolar geometry of the scene such that mixing informa-
tion across epipolar lines can be implemented with opera-
tions along the view dimension of PSVs, mixing informa-
tion along epipolar lines can be implemented with opera-
tions along the depth dimension of PSVs and mixing in-
formation between light rays can be implemented with op-
erations along the height and width dimensions of PSVs.
Based on this understanding, we introduce a Convolutional
Global Latent Renderer (ConvGLR), an efficient convolu-
tional architecture that renders novel views directly from
plane sweep volumes. ConvGLR is a 4 step model that
1) arranges the PSV into groups of successive depths, 2) ag-
gregates information across views in a depth-independent
manner while reducing the spatial dimension of the repre-
sentation, 3) performs global latent rendering by progres-
sively collapsing the depth dimension and 4) upsamples the
rendered representation into a final output. This design is
validated in mutliple experiments on the DTU [27], Real-
Forward Facing [42] and Spaces [14] datasets under estab-
lished sparse and generalizable setups [5, 42, 44], as well as
on the recently introduced ILSH dataset [77] in the context
of a public novel view synthesis challenge with held-out test
views [25, 26]. Our main contributions are as follow:

• We introduce global latent neural rendering, a simple and
powerful approach to novel view synthesis that consists
in learning a generalizable light field model from plane
sweep volumes.

• We design a Convolutional Global Latent Renderer
(ConvGLR), a convolutional architecture that implements
global latent neural rendering efficiently.

• We evaluate ConvGLR extensively on sparse and gener-
alizable setups as well as on a public novel view synthesis
challenge with held-out test views, and significantly out-
perform existing methods in all cases.

2. Related work

NeRFs Neural Radiance Fields [2, 3, 42] model the 5D
radiance and 3D density fields of individual scenes in the
weights of an MLP. They have become highly popular for
their ability to produce high quality renderings of complex
scenes from arbitrary viewpoints. They tend to be relatively
slow at rendering time, although significant speed-ups have
been obtained by removing the neural representation en-
tirely [15], using multiresolution hash encodings [43], ten-
sor decompositions [6] or 3D gaussians [30]. NeRF models
also struggle on scenes that are viewed under very sparse
conditions. Multiple attempts have been made at address-
ing this limitation, often by training on missing views us-
ing auxiliary losses. For instance, DietNeRF [24] uses a
semantic consistency loss based on the CLIP vision trans-
former [48]. RegNeRF [44] uses appearance and geome-
try regularization based on a normalizing flow model and a
smoothness loss. FlipNeRF [55] increases the number of
training rays by reflecting the existing ones and introduces
two new regularization losses. MixNeRF [56] models rays
with mixture densities and introduces depth estimation as
proxy objective. DSNeRF [11] exploits readily-available
depth supervision signals obtained from COLMAP [54].
SparseNeRF [18] improves the use of depth maps further
by introducing a depth ranking constraint. Similarly to our
approach, GANeRF [52] improves the rendering operation
on training views by acting on groups of pixels via an ad-
versarial loss applied on patches. However, this is in the
context of a scene-specific model that still relies on fixed
volumetric rendering over individual camera rays.

Light fields In free space, the radiance is constant over
light rays and scenes can be encoded as 4D light fields. This
idea has been used in early works to perform novel view
synthesis without [32], or with limited [16] geometric rea-
soning by relying on a dense sampling of the scene. Recent
methods have focused on sparser setups in a learning based
way [1, 29, 60, 63, 64], often with a focus on modeling
non-Lambertian effects [1, 64]. An important distinction
between these works and neural radiance fields is that they
learn the rendering operation instead of relying on classi-
val volumetric rendering. Contrary to our method, however,
they still learn the rendering operation over single light rays.

Implicit geometry A popular approach to novel view
synthesis is to reason about the geometry of the scene im-
plicitly [58], typically via known epipolar constraints. For
instance, GRF [67] and PixelNeRF [76] extract image fea-
tures along epipolar lines to encode 3D points, and ren-
der camera rays using volumetric rendering. IBRNet [70]
and NerFormer [49] follow a similar approach while us-
ing more sophisticated transformer-based architectures.
DynIBaR [34] extends epipolar line sampling in a motion-
aware fashion. LFNR [64] and GPNR [63] also process

2



image patches extracted along epipolar lines with trans-
formers, while using a 4D light field model predicting the
color of individual camera rays directly. Finally, the method
from [12] extends this approach to the challenging scenario
of wide-baseline stereo pairs. Our method also uses im-
plicit geometric reasoning, but it does so with plane sweep
volumes which are richer epipolar encodings than simple
epipolar lines.

Explicit geometry In contrast with the previous cate-
gory, a number of novel view synthesis methods rely on
explicit geometric modeling of the scene [58]. Early
methods included 3D warping based on depth informa-
tion [40], layered depth images to deal with occlusions [57]
or view-dependent texture maps inspired from computer
graphics [10]. More recent methods still rely on depth
maps [11, 18, 45, 47] or rely on the construction of a ge-
ometric scaffold or mesh [8, 21, 50, 51] However, these
methods are vulnerable to inacuracies in the estimation of
the underlying geometry. In contrast, our method does not
use any form of explicit geometric reasoning.

Layered representations The plane sweep algorithm was
introduced in the context of multi-view stereo in [9] and was
first applied to novel view synthesis using a layered repre-
sentation in [65]. The term plane sweep volume (PSV) is
often used to refer to the 4D tensor obtained by projecting
one input image on a set of depth planes facing a target or
reference camera [13, 14, 41, 78]. With the advent of deep
learning, several methods have been introduced to perform
generalizable novel view synthesis by processing PSVs.
Early methods typically produced layered representations
that consisted in a mix of depth maps, oclusion maps and
color maps [13, 29, 45]. Later methods focused on the mul-
tiplane image representation (MPI), which consists in a set
of RGBα images that can be projected to novel viewpoints
and rendered using alpha blending [14, 41, 62, 78]. MPIs
have also been used in a scene-specific manner [71] and to
generate novel views from a single image [19, 33, 68]. Lay-
ered depth images are MPI variants where an extra depth
channel is predicted [22, 31, 37, 57, 61]. Finally, multi-
plane feature representations were recently introduced for
multi-frame denoising [66]. Our method differs from these
works in one important way: instead of producing a lay-
ered representation that is rendered through summation or
alpha blending, it learns the rendering operation in a low-
dimensional latent space.

3D cost volumes A variant of the plane sweep algo-
rithm consists in extracting deep features from the in-
put images indepedently, constructing plane sweep vol-
umes from the deep features, and computing the variance
over the input views [74]. Such 3D cost volumes have
been used extensively in the literature on multi-view stereo
(MVS) [7, 17, 23, 72, 73, 75], and have recently been com-

bined with NeRFs for novel view synthesis [5, 28, 36, 39].
MVSNeRF [5] in particular computes a cost volume cen-
tered on the reference view, refines it with a 3D CNN,
predicts radiance and density fields using an MLP and fi-
nally integrates over camera rays using volumetric render-
ing. GeoNeRF [28] instead computes cascaded cost vol-
umes centered on the input views, refines these cost vol-
umes using multi-head attention, and again predicts radi-
ance and density fields using MLPs before integrating over
camera rays. Our methods differs from these works in three
ways: it uses a PSV representation instead of a cost vol-
ume, it learns the rendering operation instead of applying
fixed volumetric rendering, and it renders all the camera
rays jointly instead of independently.

3. Background

Consider a set of V input views of a scene, consisting of
color images and camera parameters. The images are of
height H and width W , with red-green-blue color channels,
and can be stacked into a 4D tensor I ∈ RV×3×H×W .
The camera parameters P consist of an intrinsic tensor
K ∈ RV×3×3 and an extrinsic tensor that can be split
into a rotation tensor R ∈ RV×3×3 and a translation ten-
sor t ∈ RV×3×1. Now consider a distinct target view
with ground-truth image I∗ , and camera parameters P∗ =
{K∗,R∗, t∗}. We are interested in novel view synthesis,
which consists in predicting an estimate Ĩ∗ of the target
image I∗ , given the input images I , the input camera pa-
rameters P and the target camera parameters P∗.

There exists two main formulations of this problem. The
first one learns a scene-specific function FI,P on the input
views, such that novel views can be rendered from novel
camera parameters:

Ĩ∗ = FI,P (P∗) . (1)

The function FI,P is trained on views from a single pre-
defined scene, and can be used to render novel views for
that scene only. The second formulation learns a scene-
agnostic or generalizable function F on sets of input views
and target camera parameters, such that novel views can be
rendered from novel sets of input views and target camera
parameters:

Ĩ∗ = F(I,P ,P∗) . (2)

This time, the function F is trained on a large corpus of
scenes, and can be used to render novel views from scenes
that have not been seen during training.

The scene-specific formulation is a defining character-
istic of NeRF [42] and its extensions [2, 3, 6, 43] which
model the function FI,P indirectly through two fields: a ra-
diance field returning a color for every point in space and
viewing direction (5D→ 3D function) and a density field
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returning a density for every point in space (3D→1D func-
tion). The target image Ĩ∗ is then rendered by integrating
the two fields over camera rays using classical volumetric
rendering. For scenes that mostly consist of free space (as is
often the case), the 5D radiance field model is redundant be-
cause the radiance remains constant along light rays. Light
field networks [1, 60, 64] rely on this observation to directly
model the function FI,P as a light field returning a color for
every light ray (4D→3D function).

Among generalizable methods, a well-known family
are the models that predict multiplane image representa-
tions [14, 41, 62, 78]. They typically process plane sweep
volumes and predict a 3D radiance field with no view de-
pendence (in their standard form) and a 3D density field as
a discrete set of RGBα images, that are rendered through
alpha-blending. Generalizable neural radiance fields learn a
NeRF model on top of a geometric representation, which
can rely on 2D deep features extracted along epipolar
lines [67, 70, 76] or 3D cost volumes [5, 28, 36, 39]. Ex-
isting generalizable light field networks [12, 63] also ex-
tract image patches or features along epipolar lines, but they
learn the rendering operation and directly predict a pixel
color. In this work, we introduce a generalizable light field
model that learns to render images globally, by operating
over all the camera rays jointly in a low-resolution latent
space. We summarize the difference between our approach
and various previous methods in Table 1.

methods formulation model rendering

Multi-plane images
[14, 41, 62, 78] generalizable 3D radiance field

+ 3D density field
fixed

pointwise
Neural radiance fields
[2, 3, 6, 42, 43] scene-specific 5D radiance field

+ 3D density field
fixed

pointwise
Generalizable neural radiance
fields [5, 28, 39, 67, 70, 76] generalizable 5D radiance field

+ 3D density field
fixed

pointwise
Light field networks
[1, 60, 64] scene-specific 4D light field none / learned

pointwise
Generalizable light field
networks [12, 63] generalizable 4D light field learned

pointwise
Convolutional global
latent rendering (ours) generalizable 4D light field learned

global

Table 1. Taxonomy of novel view synthesis approaches. We
distinguish methods according to the formulation they use (scene-
specific vs generalizable), the model they learn (radiance field +
density field vs light field) and the type of rendering they apply
(fixed vs learned and pointwise vs global).

4. Method
We first define the Plane Sweep Volume (PSV) and high-
light some of its interesting properties. We then intro-
duce global latent neural rendering, a new generalizable
approach to novel view synthesis, and our Convolutional
Global Latent Renderer (ConvGLR), an efficient implemen-
tation of it. Finally we discuss some implementation details.

4.1. The Plane Sweep Volume

Consider a set of D depth planes distributed parallel to the
target image plane I∗ such that they share the same nor-
mal n∗. The depth planes are uniquely defined by their
distances {ad}Dd=1 from the target camera center and these
distances are assumed to be chosen such that the scene of in-
terest is adequately covered (we discuss the choice of these
distances in practice in Sec. 4.4). We define the plane sweep
volume (PSV) as the 5D tensor X ∈ RD×V×3×H×W , ob-
tained by projecting each input image Iv on each of the D
depth planes.1 Formally, each projected image Xdv is ob-
tained by applying a homography to Iv , represented by a
3×3 matrix Hdv . Assuming without loss of generality that
the world origin is at the target camera center such that R∗
is the identity, t∗ = 0 and n∗ = (0, 0, 1)⊤, each homogra-
phy matrix is defined as [20]:

Hdv = Kv

(
Rv −

tv n∗
⊤

ad

)
K−1

∗ . (3)

The plane sweep volume is a highly structured tensor
that encodes the epipolar geometry between the input views
and the target view [9, 13, 65]. Indeed, consider the camera
ray passing through a pixel location (h,w) in the target im-
age plane. This camera ray projects as a set of epipolar lines
in the input views. Then by construction, the PSV slice:

rhw = {{{Xdvchw}3c=1}Dd=1}Vv=1 (4)

contains pixels sampled along these epipolar lines at match-
ing depths (see Fig. 2). In other words, rhw can be seen
as an encoding of the camera ray passing through (h,w),
given the input views. This is particularly useful, because
adjacent camera rays have adjacent encodings in the PSV
and can be processed together using simple local operators.
More precisely, the PSV is structured such that 1) opera-
tions along the depth dimension are operations along indi-
vidual epipolar lines, 2) operations along the view dimen-
sion are operations between corresponding epipolar lines
and 3) operations along the height and width dimensions
are operations between nearby camera rays.

4.2. Global Latent Neural Rendering

We propose a simple and powerful novel view synthesis ap-
proach that consists in learning a generalizable light field
model F , directly from plane sweep volumes X:

Ĩ∗ = F(X) (5)

where F is implemented as a convolutional neural network.
This approach fundamentally differs from the recent line of

1The term plane sweep volume is often used to refer to 4D tensors ob-
tained by projecting one input view on the depth planes. The definition we
use here generalizes this to more views.
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Figure 2. The epipolar geometry of the plane sweep volume. 1. The PSV is constructed by projecting each input view on a set of planes
distributed parallel to the target image plane. 2. The camera ray passing through the pixel location (h,w) in the target image plane (gray
line in 1.) projects as a set of epipolar lines in the input views (white lines in 3.). 4. Moving along the depth dimension of the PSV at pixel
location (h,w) is equivalent to moving along the corresponding epipolar lines for each input view. The actual depth of the object at pixel
location (h,w) is found when the local image features match across views (yellow dot).

works that use transformers to process image patches ex-
tracted along epipolar lines [12, 34, 39, 63, 64, 70], because
it uses the plane sweep volume to organise the computation
and allows to process camera rays jointly. It also differs
from the line of works on layered representations and mul-
tiplane images [13, 14, 29, 41, 45, 78], because it learns the
rendering operation, instead of keeping the depths separated
and relying on alpha-compositing.

The main challenge faced by our proposed approach is
the size of the PSV: a 5D tensor X ∈ RD×V×3×H×W

needs to be processed efficiently using convolutions to pro-
duce a 3D rendered image Ĩ∗ ∈ R3×H×W . Our solution is
illustrated in Figure 3 and has the following structure (see
the Supp. Mat. for more details).

Grouped PSV Similarly to the literature on multiplane
representations [14, 41], the 5D PSV is treated as a 4D
tensor of shape D×3V ×H×W , such that the input views
are processed together from the very first layer of the net-
work. We show in our ablation study (see Tab. 7) that this
approach is more powerful that the alternative one that con-
structs a 3D cost-volume [5, 28, 36, 39]. We then view the
PSV as a tensor of shape D

G×3GV ×H×W for a group size
G. This step significantly reduces the computational load
by allowing to process the depths in groups, and effectively
reduces the number of depths from D to DG = D

G .

Multi-view matching Early layers aggregate information
accross views, and treat the DG depths independently from
each other by keeping them in the batch dimension. The
spatial resolution is reduced 4×, alternatively using 2D con-
volutions with stride 2 and 2D resblocks, following a typi-
cal encoder-decoder or Unet [53] structure. The number of
channels at the base of the network is a hyperparameter C,
and the channels are doubled after each spatial downsam-
pling. This block results in a latent volumetric representa-

… … …

grouped

PSV
global latent rendering

multi-view 

matching
upsampling output

…

d
ep

th
s

DG×3GV×H×W

X

DG×4C×
H
4 ×

W
4

Y

1×4C×
H
4 ×

W
4

Z

1×3×H×W

Ĩ∗

Figure 3. Overview of ConvGLR. The 4D grouped PSV X is
turned into a latent volumetric representation Y , then rendered
into a latent novel view Z and finally upsampled into the novel
view Ĩ∗. All the colored blocks are implemented with 2D convo-
lutions and resblocks. Blocks with matching colors share weights.

tion Y ∈ RDG×4C×H
4 ×W

4 .

Global latent rendering The rendering operation is fun-
damentally an integration over the depth dimension, and
consists in reducing the depth of the latent tensor Y to 1.
We implement it by iteratively grouping the depths by pairs
and processing them with 2D resblocks. This emulates the
use of 3D resblocks with a kernel size of 2 and a stride of
2 along the depth dimension, without requiring memory-
expensive transpose operations. This block produces a
globally rendered latent representation Z ∈ R1×4C×H

4 ×W
4 .

Upsampling Finally, the output Ĩ∗ is produced by upsam-
pling the latent representation 4×, alternatively using 2×
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bilinear interpolation and 2D resblocks, as is typically done
in the super-resolution literature [4, 35].

4.3. Additional conditioning

While the PSV is an information-rich encoding of the in-
put views, we propose to augment it further with two ad-
ditional conditional inputs. We show in our ablation study
(see Tab. 7) that these two conditional inputs have a negli-
gible negative impact on the computational load, but have a
significant positive impact on performance.

Positional encoding First, we concatenate to the PSV the
spatial coordinates (h,w) in the form of two extra channels
normalized in the [0, 1] range. We do not use any Fourrier
encoding to avoid overloading an already large PSV tensor.
Explicitly feeding the spatial coordinates is a simple way
to make the model spatially-adaptive [38], such that it ren-
ders specific groups of pixels differently depending on their
location in the image (e.g. outer pixels are more likely to be-
long to the background, and be of specific colors). This use
of positional encoding is closer to its original use in trans-
formers [69], where it was introduced as a way of injecting
information about the position of tokens in a sequence, than
its use in NeRF [42], where it helps encode high-frequency
content.

Angular encoding Let udv be the unit vector pointing in
the direction between the camera center of view v and the
center of the depth plane d. Remembering that the normal
to the target image plane is n∗, we concatenate the dot prod-
uct udv · n∗ as an additional channel to each projected im-
age Xdv in the PSV. The motivation is two-fold. First, this
dot product measures an angular distance between the tar-
get view and view v (as seen from the depth plane d), and
hence, it is a good measure of the similarity between the two
views at that depth. Second, we hypothesise that this can
help model finegrained view-dependent effects, by making
the input more explicitly view-dependent.2

4.4. Implementation details

Similarly to other novel view synthesis methods, the near
and far bounds are important hyperparameters that can have
a big impact on the performance of the method. For the ex-
periments on the DTU dataset, we empirically chose a near
bound of 0.85 and a far bound of 1.75 for all scenes and tar-
get viewpoints. For the experiments on the RFF, LLFF and
IBRNet datasets, we follow the established practice of using
the bounds determined by COLMAP [54], with 0.9 and 1.1
factors for the near and far bounds respectively. More gen-
erally, the choice of distances {ad}Dd=1—which determines
the distribution of depth planes in the scene—faces similar

2However, we observe that the PSV is already view-dependent and the
angular distance could be computed implicitly by measuring the magnitude
of the translations between successive depths.

issues to the choise of sample points along rays in volu-
metric rendering. While sophisticated sampling strategies
exist [3], we chose two standard distributions. We sample
the distances uniformly in depth for DTU and ILSH, and
uniformly in disparity for RFF, LLFF and IBRNet. For the
hyperparameters of the ConvGLR model, we used D = 128
and G = 4, corresponding to an effective number of depths
DG = 32, and C = 128 in all our experiments. The model
is relatively large with 40M parameters (95M when the pa-
rameters of the rendering blocks are not shared), but it is
fast, rendering a 375×512 image in 0.71 seconds on a single
GPU. Unless stated otherwise, all our models are trained
with the Adam optimizer for 120k steps with a learning rate
of 1.5e-4, decreased to 1.5e-5 in the last 20% of the train-
ing and optionally to 1.5e-6 for the last 5%. We train on
patches of 360×360 pixels (or full images for Sparse DTU)
with a batch size of 4 or 8 depending on the experiment,
using 4 or 8 GPUs respectively. We use a standard VGG
loss [14, 41, 78], which we switch to an L1 loss in the last
10% of the training to avoid gridding artifacts. We use gra-
dient clipping to stabilize the training.

5. Experiments

We evaluate our method under sparse and generalizable
novel view synthesis scenarios. We consider 5 different
experimental setups, using 3 different validation datasets,
as detailed below. In all cases, our convolutional global
latent renderer (ConvGLR) significantly outperforms the
baselines. Qualitative comparisons are available in Fig. 1
and in the Supp. Mat., where an additional evaluation on
the Spaces dataset [14] is also presented.

Table 2: Sparse DTU We reproduce the setup intro-
duced in PixelNeRF [76], refined in RegNeRF [44] and
used in [11, 18, 55, 56] on the DTU dataset [27]. In this
setup, the images are downsampled 4× to a resolution of
400×300. Images with incorrect exposure are excluded.3

The dataset is split into 88 scenes for training with 7 light-
ing conditions and 15 scenes for validation.4 Three scenar-
ios are considered with 3, 6 and 9 input views.5 Validation
is performed on all the views that are not input views or
excluded views for all the validation scenes, with lighting
condition nb. 3. We report PSNR, SSIM and LPIPS (VGG
variant) metrics computed on full and masked images, using
object masks produced by [44]. We train 3 different mod-
els with 3, 6 and 9 input views on the 88 training scenes
(ConvGLR). We see that they outperform all the baseline
in all 3 scenarios by significant margins, especially on the
full images due to a strong ability to generalize the back-
ground across scenes. We then finetune each model once

3Images [3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 36, 37, 38, 39].
4Scans [8, 21, 30, 31, 34, 38, 40, 41, 45, 55, 63, 82, 103, 110, 114].
5First 3, 6 and 9 images in [25, 22, 28, 40, 44, 48, 0, 8, 13].
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Method Setting
PSNR↑ SSIM↑ LPIPS↓

3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view
full masked full masked full masked full masked full masked full masked full masked full masked full masked

SRF [8]
generalizable

unknown scene

15.84 15.32 17.77 17.54 18.56 18.35 0.532 0.671 0.616 0.730 0.652 0.752 0.482 0.304 0.401 0.250 0.359 0.232
PixelNeRF [76] 18.74 16.82 21.02 19.11 22.23 20.40 0.618 0.695 0.684 0.745 0.714 0.768 0.401 0.270 0.340 0.232 0.323 0.220
MVSNeRF [5] 16.33 18.63 18.26 20.70 20.32 22.40 0.602 0.769 0.695 0.823 0.735 0.853 0.385 0.197 0.321 0.156 0.280 0.135
ConvGLR (Ours) 20.47 21.57 25.23 23.76 26.98 25.44 0.784 0.846 0.843 0.878 0.878 0.907 0.249 0.159 0.189 0.123 0.147 0.090
SRF ft [8]

generalizable
known scene

16.06 15.68 18.69 18.87 19.97 20.75 0.550 0.698 0.657 0.757 0.678 0.785 0.431 0.281 0.353 0.225 0.325 0.205
PixelNeRF ft [76] 17.38 18.95 21.52 20.56 21.67 21.83 0.548 0.710 0.670 0.753 0.680 0.781 0.456 0.269 0.351 0.223 0.338 0.203
MVSNeRF ft [5] 16.26 18.54 18.22 20.49 20.32 22.22 0.601 0.769 0.694 0.822 0.736 0.853 0.384 0.197 0.319 0.155 0.278 0.135
ConvGLR ft (Ours) 20.52 21.80 25.48 24.13 27.31 25.85 0.790 0.853 0.852 0.886 0.883 0.911 0.237 0.147 0.175 0.110 0.139 0.084
mip-NeRF [2]

scene-specific

7.64 8.68 14.33 16.54 20.71 23.58 0.227 0.571 0.568 0.741 0.799 0.879 0.655 0.353 0.394 0.198 0.209 0.092
DietNeRF [24] 10.01 11.85 18.70 20.63 22.16 23.83 0.354 0.633 0.668 0.778 0.740 0.823 0.574 0.314 0.336 0.201 0.277 0.173
RegNeRF [44] 15.33 18.89 19.10 22.20 22.30 24.93 0.621 0.745 0.757 0.841 0.823 0.884 0.341 0.190 0.233 0.117 0.184 0.089
MixNeRF [56] 18.95 22.30 25.03 0.744 0.835 0.879
FlipNeRF [55] 19.55 22.45 25.12 0.767 0.839 0.882
DSNeRF [11] 16.90 20.60 22.30 0.570 0.750 0.810
SparseNeRF [18] 19.55 0.769 0.201

Table 2. Sparse DTU. Scenarios with 3, 6 and 9 input views. We reproduce the values reported by [44] for [2, 5, 8, 24, 44, 76] and
the values reported by each for [11, 18, 55, 56]. We do not reproduce the LPIPS values of [11, 55, 56] as they were computed using the
AlexNet variant of LPIPS. We also note that the values reported by [11] were computed on the full images. When a value is not available
in the original publication, we simply gray the cell out. For each metric, 1st, 2nd and 3rd best-performing methods are highlighted in red,
orange and yellow respectively.

on the input views of the 15 validation scenes for 10k steps
(ConvVSR ft). To prevent the model from learning an iden-
tity function, we continue exposing it to training scenes,
where the target views are distinct from the input views.
These models further improve their performances on novel
views of the validation scenes.

Method Setting PSNR↑ SSIM↑ LPIPS↓
SRF [8]

generalizable
unknown scene

12.34 0.250 0.591
PixelNeRF [76] 7.93 0.272 0.682
MVSNeRF [5] 17.25 0.557 0.356
ConvGLR (Ours) 19.95 0.700 0.262
SRF ft [8]

generalizable
known scene

17.07 0.436 0.529
PixelNeRF ft [76] 16.17 0.438 0.512
MVSNeRF ft [5] 17.88 0.584 0.327
ConvGLR ft (Ours) 20.53 0.711 0.253
mip-NeRF [2]

scene-specific

14.62 0.351 0.495
DietNeRF [24] 14.94 0.370 0.496
RegNeRF [44] 19.08 0.587 0.336
MixNeRF [56] 19.27 0.629
FlipNeRF [55] 19.34 0.631
DSNeRF [11] 18.94 0.582
SparseNeRF [18] 19.86 0.624 0.328

Table 3. Sparse RFF. Scenario with 3 input views. We reproduce
the values reported by [44] for [2, 5, 8, 24, 44, 76] and the values
reported by each for [11, 18, 55, 56]. We do not reproduce the
LPIPS values of [11, 55, 56] as they were computed using the
AlexNet variant of LPIPS.

Table 3: Sparse RFF We reproduce the setup introduced
in RegNeRF [44] and used in [11, 18, 55, 56] on the Real-
Forward Facing dataset (RFF) [42] for 3 input views. In this
setup, the images are downsampled 8× to a resolution of
504×378. Every 8th image is used for validation, and the 3
input views are selected evenly from the remaining images.
We report PSNR, SSIM and LPIPS (VGG) computed on

full images. While it was suggested in [44] that the LLFF
dataset [41] is too small for training generalizable methods
(36 scenes), we found that finetuning a DTU trained model
on LLFF provides good performance (ConvPSV). Again,
finetuning our model on the set of 8 validation scenes im-
proves performance futher (ConvGLR ft).

Method Setting PSNR↑ SSIM↑ LPIPS↓
PixelNeRF [76]

generalizable
unknown scene

19.31 0.789 0.671
IBRNet [70] 26.04 0.917 0.190
MVSNeRF [5] 26.63 0.931 0.168
GPNR [63] 28.50 0.932 0.167
ConvGLR (Ours) 31.65 0.952 0.080

Table 4. Generalizable DTU. We reproduce the values reported
by [5] for [5, 70, 76] and the value reported by [63].

Table 4: Generalizable DTU We reproduce the setup in-
troduced in MVSNeRF [5] and used in GPNR [63] on the
DTU dataset [27]. In this setup, the images are downsam-
pled 2× and cropped to a resolution of 640×512 (images
pre-processed by MVSNet [74]). The dataset is split into 88
scenes for training with 7 lighting conditions and 16 scenes
for validation6. The images with incorrect exposure are not
excluded during training. One scenario is considered with
10 input views, using the input/target split from [5]. Valida-
tion is performed on 4 views per scene7 with lighting con-
dition nb. 3. We report PSNR, SSIM and LPIPS (VGG)
metrics computed on masked images (foreground pixels,
whose ground truth depths stand inside the scene bound).
Our model significantly outperforms previous methods.

6Scans [1, 8, 21, 30, 31, 34, 38, 40, 41, 45, 55, 63, 82, 103, 110, 114].
7images [23, 24, 32, 44].
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Method Setting PSNR↑ SSIM↑ LPIPS↓
LLFF [41]

generalizable
unknown scene

24.13 0.798 0.212
IBRNet [70] 25.13 0.817 0.205
GeoNeRF [28] 25.44 0.839 0.180
GPNR [63] 25.72 0.880 0.175
ConvGLR (Ours) 26.94 0.875 0.164
SRN [59]

generalizable
known scene

22.84 0.668 0.378
IBRNet ft [70] 26.73 0.851 0.175
GeoNeRF ft 10k [28] 26.58 0.856 0.162
ConvGLR ft (Ours) 27.81 0.889 0.125
NeRF [42]

scene-specific
26.50 0.811 0.250

GRF [67] 26.64 0.837 0.178

Table 5. Generalizable RFF. We reproduce the values reported
by [42] for [41, 42, 59] and the values reported by each for [28,
63, 67, 70].

Table 5: Generalizable RFF We reproduce the setup in-
troduced in NeRF [42] and used in [28, 63, 67, 70] on the
Real Forward-Facing (RFF) dataset [42]. In this setup, the
images are downsampled 4× to a resolution of 1008×756.
Every 8th image is used for validation, and 10 nearby input
views are selected from the remaining images. We report
PSNR, SSIM and LPIPS (VGG) computed on full images.
We finetune our DTU-trained model for 50k steps on the
IBRNet dataset (ConvGLR). We then finetune the model for
another 4k steps on the 8 validation scenes (ConvGLR ft).

Method
PSNR↑ SSIM↑ Time↓

(s)full masked full masked

C0:TensoRF 20.54 26.17 0.71 0.82 94.02
T3:CogCoVi 21.49 26.33 0.70 0.82 806.00
T2:NoNeRF 20.37 26.43 0.69 0.82 175.58
T1:OpenSpaceAI 21.66 27.02 0.68 0.83 76.88
C2:DINER-SR 22.37 28.50 0.72 0.83 87.25
C1:MPFER-H 28.05 28.90 0.84 0.83 1.50
ConvGLR (Ours) 28.39 30.17 0.85 0.84 0.71

Table 6. ILSH dataset. We reproduce the values from the ICCV
2023 view synthesis challenge: To NeRF or not to NeRF [26].

Table 6: ILSH The Imperial Light-Stage Head dataset
(ILSH) [77] was introduced as a benchmark for a recent
ICCV 2023 view synthesis challenge [26]. The dataset con-
sists in 52 scenes (one individual per scene) with 24 views
each at a resolution of 3000×4096, with 50 views from 38
scenes held out for testing. The dataset is publicly avail-
able upon request and blind evaluation on the test set can
be performed on the Codalab platform [25]. Evaluation
is performed using PSNR and SSIM metrics, on full and
masked images. Following the challenge organising team
C1:MPFER-H [26], we downsample the images 8× and
train our model on the 52 scenes using 16 input views. Our
method outperforms the challenge winner T1:OpenSpaceAI
and the challenge organizing team C1:MPFER-H by more
than 3dB and 1.2dB in masked PSNR respectively (metric
used during the challenge).

line pos. enc. ang. enc. backbone patch size params FLOPS PSNR↑
1 Yes Yes No PSV 256×256 29.6M 0.3T 17.30
2 Yes Yes MVS-based 256×256 40.1M 6.1T 23.39
3 Yes Yes MPI-based 256×256 28.2M 7.8T 24.62
4 Yes Yes ConvGLR 16×16 40.3M 6.6T 24.03
5 Yes Yes ConvGLR 32×32 40.3M 6.6T 25.79
6 Yes Yes ConvGLR 64×64 40.3M 6.6T 26.22
7 Yes Yes ConvGLR 128×128 40.3M 6.6T 26.20
8 No No ConvGLR 256×256 40.2M 6.5T 25.66
9 Yes No ConvGLR 256×256 40.3M 6.5T 25.91

10 Yes Yes ConvGLR 256×256 40.3M 6.6T 26.33

Table 7. Ablations. All the models were trained on the Sparse
DTU setup with 9 input views for 50k steps.

Table 7: Ablations We perform ablations on the Sparse
DTU setup with 9 input views, and train each model for
50k steps on patches of 256×256 pixels. We start by train-
ing our full model (line 10). We then consider 3 variants of
our backbone architecture. No PSV: the input images are
concatenated and processed as a group, but no PSV is con-
structed (line 1). MVS-based: deep features are extracted
from individual input images and a cost volume is con-
structed by computing the variance over the views (line 2).
MPI-based: the model outputs D RGBα images that are
then alpha-blended (line 3). We see that our ConvGLR
backbone produces the best results by big margins, validat-
ing our choice of a PSV based architecture rendering novel
views globally in a low-dimensional latent space. We then
train the same model 4 times, on image patches ranging
from 16×16 to 128×128 (lines 4-7). In order to keep the
effective batch size constant, we train on 256× 256 patches
that we slice into 162, 82, 42 and 22 pieces respectively.
We see that the performance degrades sharply with smaller
patch sizes, confirming that the global rendering contributes
significantly to the performance of our approach. Finally we
turn off the positional and angular encodings together and
separately (lines 8-9). We see that both contribute to the
final performance of the model.

6. Conclusion

We introduced global latent neural rendering, a novel view
synthesis approach that consists in learning a generalizable
light field model from plane sweep volumes, and ConvGLR,
a convolutional architecture that implements this idea ef-
ficiently. While ConvGLR performs remarkably well, we
believe that there is still room for improvement by optimiz-
ing the architecture, scaling up the training, and sampling
the depth planes in a scene-adaptive manner. Another in-
teresting direction for future work is the application to very
high-resolution images, where training on large image por-
tions becomes challenging due to memory constraints dur-
ing training.
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7. Averaged plane sweep volume

As discussed in Sec. 4, the plane sweep volume is a highly
structured tensor encoding the epipolar geometry between
the input views and the target view. One of its interest-
ing properties is that local image features match across the
input views when a depth plane is precisely located on an
object in the scene. A simple way to highlight this prop-
erty is to average the PSV over the input views, as done in
Fig. 4. There, each depth plane slices the 3D object at a
specific depth. When a part of the object is located on the
depth plane, this part appears “in focus” in the mean PSV.
On the contrary, the parts that are located at other depths
appear blurry and out of focus. Such averaging of the PSV
is closely related to the original plane sweep algorithm of
Collins [9] for depth estimation, and further motivates the
use of plane sweep volumes for novel view synthesis.

8. Implementation details

We presented an overview of our Convolutional Global La-
tent Renderer (ConvGLR) in Sec. 4 and Fig. 3 of the main
paper. ConvGLR transforms 5D input PSVs into 3D ren-
dered images in 4 steps: (1) Grouped PSV, (2) Multi-view
matching, (3) global latent rendering and (4) upsampling.
We provide more details in Tab. 8 where all the operations
are listed with their effect on the dimension of the input ten-
sor. Particular emphasis has been put on memory efficiency
and in-place viewing operations are used extensively while
expensive reshape or transpose operations are avoided.

We propose two possible implementations of the global
latent rendering step: one where the resblocks are applied
over the depths with shared weights by using the batch
dimension for parallel processing, and one where the res-
blocks are applied over the depths with specialized weights
by moving the depths into the channel dimension and ap-
plying resblocks implemented with grouped convolutions.
In practice, we did not observe any significant difference of
performance between the two implementations.

9. Spaces dataset

Table 9: Spaces. We reproduce the setup from Deep-
View [14] and used in MPFER [66] on the Spaces
dataset [14]. This dataset consists of 100 indoor and out-
door scenes, captured 5 to 10 times each using a 16-camera
rig translated by small amounts. The dataset is split into 90
scenes for training and 10 scenes for validation. The resolu-
tion of the images is 480×800. Four scenarios are consid-
ered: one with 12 input views and three with 4 input views.

Following MPFER [66], we train one model for the scenario
with 12 input views and one model for the 3 scenarios with
4 input views. Validation is performed on the first rig posi-
tion for the 10 validation scenes, on the target images spec-
ified in [14] for each scenario. We report PSNR, SSIM and
LPIPS (AlexNet variant) metrics computed on images after
cropping an outer boundary of 16 pixels as done in [14, 66].
Our Convolutional Global Latent Renderer (ConvGLR) out-
performs Soft3D [46], DeepView [14] and MPFER [66] by
significant margins in all scenarios.

10. Qualitative results
We provide a number of qualitative comparisons to base-
lines in Fig. 5, Fig. 6, Fig. 7, Fig. 8.
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2. PSV averaged over
views & depths

3. PSV averaged over views1. Target view
depths

Figure 4. Averaging the plane sweep volume. 1. The target view for which a plane sweep volume is constructed, using 9 input views (not
including the target view) and near and far bounds that are close to the object depth. 2. Averaging the PSV over views and depths provides
a blurry estimate of the target views. 3. Averaging the PSV over the views brings successive depths of the object in focus.

implementation shared weights specialized weights

block description
output dimension

description
output dimension

batch channels height width batch channels height width

grouped
PSV

5D PSV D V 3 H W

concatenate views D 3V H W

view DG 3GV H W

multi-view
matching

conv. DG C H W

2 resblocks DG C H W

conv. (stride 2) DG 2C H/2 W/2

3 resblocks DG 2C H/2 W/2

conv. (stride 2) DG 4C H/4 W/4

4 resblocks DG 4C H/4 W/4

global latent
rendering

view DG/2 8C H/4 W/4 view 1 DG×4C H/4 W/4

1 resblock DG/2 4C H/4 W/4 1 resblock
(DG/2 groups) 1 DG/2×4C H/4 W/4

view DG/4 8C H/4 W/4

1 resblock DG/4 4C H/4 W/4 1 resblock
(DG/4 groups) 1 DG/4×4C H/4 W/4

view DG/8 8C H/4 W/4

1 resblock DG/8 4C H/4 W/4 1 resblock
(DG/8 groups) 1 DG/8×4C H/4 W/4

view DG/16 8C H/4 W/4

1 resblock DG/16 4C H/4 W/4 1 resblock
(DG/16 groups) 1 DG/16×4C H/4 W/4

view 1 DG/16×4C H/4 W/4

1 resblock 1 4C H/4 W/4 1 resblock 1 4C H/4 W/4

upsampling

interpolate (nearest) 1 4C H/2 W/2

3 resblocks 1 2C H/2 W/2

interpolate (nearest) 1 2C H W

2 resblocks 1 C H W

conv. 1 3 H W

Table 8. ConvGLR. The 5D plane sweep volume is progressively turned into a 3D rendered image by applying a succession of 2D
convolutions and resblocks while making effective use of viewing operations and batching. Learnable blocks are emphasized in bold.

Method
PSNR↑ SSIM↑ LPIPS↓

12 views 4 views 12 views 4 views 12 views 4 views
dense small medium large dense small medium large dense small medium large

Soft3D [46] 31.93 30.29 30.84 30.57 0.940 0.925 0.930 0.931 0.052 0.064 0.060 0.054
DeepView [14] 34.23 31.42 32.38 31.00 0.965 0.954 0.957 0.952 0.015 0.026 0.021 0.024
MPFER [66] 35.73 33.20 33.47 32.38 0.972 0.959 0.959 0.953 0.012 0.018 0.018 0.021
ConvGLR (Ours) 36.05 34.07 34.33 33.34 0.977 0.968 0.968 0.964 0.013 0.018 0.018 0.020

Table 9. Spaces. We reproduce the values reported by [66] for [14, 46, 66] (computed on images provided by the authors for [14, 46]).
LPIPS values were computed with the AlexNet backbone following [66].
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RegNeRF [44] ConvGLR (Ours) Ground Truth

Figure 5. Qualitative results. Sparse DTU.

RegNeRF [44] ConvGLR (Ours) Ground Truth

Figure 6. Qualitative results. Sparse RFF.
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GPNR [63] ConvGLR (Ours) Ground Truth

Figure 7. Qualitative results. Generalizable DTU (unknown scenes).

GeoNeRF [28] ConvGLR (Ours) Ground Truth

Figure 8. Qualitative results. Generalizable RFF (unknown scenes).
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