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Figure 1. APAP, our novel shape deformation method, enables plausibility-aware mesh deformation and preservation of fine details of the
original mesh offering an interface that alters geometry by directly displacing a handle (red) along a direction (gray). The improvement
achieved by leveraging a diffusion prior is illustrated by the smooth geometry near the handle in the armchair example (the middle column).

Abstract

We present As-Plausible-as-Possible (APAP) mesh de-001
formation technique that leverages 2D diffusion priors to002
preserve the plausibility of a mesh under user-controlled de-003
formation. Our framework uses per-face Jacobians to rep-004
resent mesh deformations, where mesh vertex coordinates005
are computed via a differentiable Poisson Solve. The de-006
formed mesh is rendered, and the resulting 2D image is used007
in the Score Distillation Sampling (SDS) process, which008
enables extracting meaningful plausibility priors from a009
pretrained 2D diffusion model. To better preserve the010
identity of the edited mesh, we fine-tune our 2D diffusion011
model with LoRA. Gradients extracted by SDS and a user-012
prescribed handle displacement are then backpropagated to013
the per-face Jacobians, and we use iterative gradient de-014
scent to compute the final deformation that balances be-015
tween the user edit and the output plausibility. We eval-016
uate our method with 2D and 3D meshes and demonstrate017
qualitative and quantitative improvements when using plau-018
sibility priors over geometry-preservation or distortion-019
minimization priors used by previous techniques.020

1. Introduction 021

For 2D and 3D content, mesh is the most prevalent rep- 022
resentation, thanks to its efficiency in storage, simplicity 023
in rendering and also compatibility in common graphics 024
pipelines, versatility in diverse applications such as de- 025
sign, physical simulation, and 3D printing, and flexibility 026
in terms of decomposing geometry and appearance infor- 027
mation, with widespread adoption in the industry. 028

For the creation of 2D and 3D meshes, recent break- 029
throughs in generative models [29, 35, 39, 46, 47, 49, 53, 030
56] have demonstrated significant advances. These break- 031
throughs enable users to easily generate content from a text 032
prompt [35, 39, 47, 53, 56], or from photos [41, 47]. How- 033
ever, visual content creation typically involves numerous 034
editing processes, deforming the content to satisfy users’ 035
desires through interactions such as mouse clicks and drags. 036
Facilitating such interactive editing has remained relatively 037
underexplored in the context of recent generative tech- 038
niques. 039

Mesh deformation is a subject that has been researched 040
for decades in computer graphics. Over time, researchers 041
have established well-defined methodologies, characteriz- 042
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ing mesh deformation as an optimization problem that043
aims to preserve specific geometric properties, such as the044
Mesh Laplacian [32, 33, 51], local rigidity [16, 50], and045
mesh surface Jacobians [2, 11], while satisfying given con-046
straints. To facilitate user interaction, these methodologies047
have been extended to introduce specific user-interactive048
deformation handles, such as keypoints [18, 26, 55], cage049
mesh [21, 23, 24, 31, 57, 62], and skeleton [4, 60, 61], with050
the blending functions defined based on the preservation of051
geometric properties.052

Despite the widespread use of classical mesh deforma-053
tion methods, they often fail to meet users’ needs because054
they do not incorporate the perceptual plausibility of the055
outputs. For example, as illustrated in Fig. 1, when a user056
intends to drag a point on the top of a table image, the classi-057
cal deformation technique may introduce unnatural bending058
instead of lifting the tabletop. This limitation arises because059
deformation techniques solely based on geometric proper-060
ties do not incorporate such semantic and perceptual pri-061
ors, resulting in the mesh editing process becoming more062
tedious and time-consuming.063

Recent learning-based mesh deformation techniques [2,064
21, 26, 34, 52, 60, 62] have attempted to address this prob-065
lem in a data-driven way. However, they are also limited066
by relying on the existence of certain variations in the train-067
ing data. Even recent large-scale 3D datasets [6–8, 59] have068
not reached the scale that covers all possible visual content069
users might intend to create.070

To this end, we introduce our novel mesh deforma-071
tion framework, dubbed APAP (As-Plausible-As-Possible),072
which exploits 2D image priors from a diffusion model073
pretrained on an Internet-scale image dataset to enhance074
the plausibility of deformed 2D and 3D meshes while pre-075
serving the geometric priors of the given shape. Recently,076
score distillation sampling (SDS) [39] has demonstrated077
great success in generating plausible 2D and 3D content,078
such as NeRF [22, 27, 65] and vector images [17, 20], us-079
ing the distilled 2D image priors from a diffusion model.080
We incorporate these diffusion-model-based 2D priors into081
the optimization-based deformation framework, achieving082
the best synergy between geometry-based optimization and083
distilled-prior-based optimization.084

To achieve this optimal synergy between geometric and085
perceptual priors within a unified framework, we introduce086
an alternative optimization approach. At each step, we first087
update the Jacobian of each mesh face using the SDS loss088
and user-provided constraints. Subsequently, the mesh ver-089
tex positions are recalculated by solving Poisson’s equation090
with the updated face Jacobians. The direct application of091
the 2D diffusion prior via SDS, however, tends to compro-092
mise the identity of the given objects—an essential aspect in093
deformation. We thus enhance the identity awareness of the094
diffusion prior by finetuning it with the provided source im-095

age. The model is integrated into our two-stage pipeline that 096
initiates deformation without the perceptual prior (SDS) 097
and refines it with SDS and the given constraints afterward 098
to create deformations that adhere to user-defined editing 099
instructions while remaining visually plausible. 100

In experiments, we examine APAP using APAP- 101
BENCH consisting of 3D and 2D triangular meshes and edit- 102
ing instructions. The proposed method produces plausible 103
deformations of 3D meshes compared to its baseline [50] 104
based exclusively on a geometric prior. Evaluation in the 105
task of 2D mesh editing further verifies the effectiveness of 106
APAP as illustrated by the highest k-NN GIQA score [12] 107
in quantitative analysis, and the higher preference over the 108
baseline in a user study. 109

2. Related Work 110

2.1. Geometric Mesh Deformation 111

Mesh deformation has been one of the central problems in 112
geometry processing and is thus addressed by a wide range 113
of techniques. Cage-based methods [23, 24, 31, 57] let 114
users alter meshes by manipulating cages enclosing them, 115
calculating a point inside as a weighted sum of cage ver- 116
tices. Skeleton-based approaches [4, 58, 60, 61] offer an- 117
imation control by mapping surface points to underlying 118
joints and bones, ideal for animating human/animal-like fig- 119
ures. Unlike the previous techniques that require the man- 120
ual cage or skeleton construction, biharmonic coordinates- 121
based methods [18, 55] automate establishing mappings 122
from control points to vertices by formulating optimization 123
problems. Other types of works instead allow users to ma- 124
nipulate shapes via direct vertex displacement while impos- 125
ing constraints on local surface geometry, including rigid- 126
ity [16, 50] and Laplacian smoothness [32, 33, 51]. Such 127
hand-crafted deformation priors often lack consideration of 128
visual plausibility, necessitating careful control point place- 129
ment and iterative manual refinement to achieve satisfactory 130
results. 131

2.2. Data-Driven Mesh Deformation 132

Data-driven approaches to mesh deformation [2, 21, 26, 133
34, 52, 60, 62] learn from shape collections, utilizing neu- 134
ral networks to infer parameters for classical deformation 135
techniques, such as cage vertex coordinates and displace- 136
ments [62], keypoints [21, 26, 55], subspaces of keypoint 137
arrangements [34], differential coordinates [2], etc. How- 138
ever, these methods assume the availability of large-scale 139
category-specific shape collection [21, 26, 55, 60, 62] or re- 140
quire dense correspondences between them [2, 52], limiting 141
their applicability to new, out-of-sample shapes. We instead 142
propose to directly mine deformation priors from pretrained 143
diffusion models. Leveraging a generic (category-agnostic) 144
image generative model trained on an Internet-scale image 145
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dataset, we devise a method that easily generalizes to novel146
2D and 3D shapes while lifting the requirement for shape147
collections.148

2.3. Pretrained 2D Priors for Shape Manipulation149

Image analysis [40] and generation [3, 30, 43, 63] tech-150
niques can serve as effective visual priors for image editing151
tasks [5, 14, 48, 54, 64]. In addition, recent work [10, 44]152
and their adaption [9], enable personalized image genera-153
tion and editing by learning a text embedding [10] or fine-154
tuning additional parameters, such as LoRA [15] to pre-155
serve and replicate the identities of given exemplars dur-156
ing editing. One interesting work is DragDiffusion [48],157
akin to DragGAN [37], which introduces a drag-based user158
interface for image editing through the manipulation of la-159
tent representations. However, it is not extendable to the160
deformation of parametric images, such as 2D meshes,161
and also 3D shapes. Another interesting line of works162
[11, 25, 36] extends the idea further to manipulate shapes by163
propagating image-based gradients to the underlying shape164
representations. They maximize CLIP [40] similarity be-165
tween the renderings and text prompts to either add geo-166
metric textures [36], jointly update both vertices and tex-167
ture [25], or deform a shape parameterized by per-triangle168
Jacobians [11]. In contrast to such text-driven editing tech-169
niques, we build on Score Distillation Sampling (SDS) [39]170
to enable direct manipulation of shapes via handle dis-171
placement, ensuring visual plausibility. While the tech-172
nique is prevalent in various problems ranging from text-to-173
3D [35, 39, 47, 53, 56], image editing [13] and neural field174
editing [65], it has not been adopted for shape deformation.175

3. Method176

We present APAP, a novel handle-based mesh deformation177
framework capable of producing visually plausible defor-178
mations of either 2D or 3D triangular meshes. To achieve179
this goal, we integrate powerful 2D diffusion priors into a180
learnable Jacobian field representation of shapes.181

We emphasize that leveraging 2D priors, such as la-182
tent diffusion models (LDMs) [43] trained on large-scale183
datasets [45], for shape deformation poses challenges that184
require meticulous design choices. The following sections185
will delve into the details of shape representation (Sec. 3.1)186
and diffusion prior (Sec. 3.2), offering a rationale for the187
design decisions underpinning our framework (Sec. 3.3).188

3.1. Representing Shapes as Jacobian Fields189

Let M0 = (V0,F0) denote a source mesh to be de-190
formed, represented by vertices V0 ∈ RV×3 and faces191
F0 ∈ RF×3. Users are allowed to select a set of ver-192
tices used as movable handles designated by an indicator193
matrix Kh ∈ {0, 1}Vh×V . We also require users to se-194
lect a set of anchors, represented as another indicator ma-195

trix Ka ∈ {0, 1}Va×V , to avoid trivial solutions (i.e., global 196
translations). Then, the handle and anchor vertices become 197
Vh = KhV0 and Va = KaV0. 198

Our framework also expects a set of vectors Dh ∈ 199
RVh×3 that indicate the directions along which the handles 200
will be displaced. Furthermore, we let Th = Vh +Dh and 201
Ta = Va denote the target positions of the user-specified 202
handles and anchors, respectively. 203

In this work, we employ a Jacobian field J0 = {J0,f |f ∈ 204
F0}, a dual representation of M0, defined as a set of per- 205
face Jacobians J0,f ∈ R3×3 where 206

J0,f = ∇fV0, (1) 207

and ∇f is the gradient operator of triangle f . 208
Conversely, we compute a set of deformed vertices V∗ 209

from a given Jacobian field J by solving a Poisson’s equa- 210
tion 211

V∗ = argmin
V

∥LV −∇TAJ∥2, (2) 212

where ∇ is a stack of per-face gradient operators, A ∈ 213
R3F×3F is the mass matrix and L ∈ RV×V is the cotangent 214
Laplacian of M0, respectively. Since L is rank-deficient, 215
the solution of Eqn. 2 cannot be uniquely determined un- 216
less we impose constraints. We thus consider a constrained 217
optimization problem 218

V∗ = argmin
V

∥LV −∇TAJ∥2 + λ∥KaV −Ta∥2, (3) 219

where λ ∈ R+ is a weight for the constraint term. Note 220
that we solve Eqn. 3 with the user-specified anchors as con- 221
straints to determine V∗. 222

Taking the derivative with respect to V, the problem in 223
Eqn. 3 turns into a system of equations 224(

LTL+ λKT
aKa

)
V = LT∇TAJ+ λKT

a Ta, (4) 225

which can be efficiently solved using a differentiable 226
solver [2] implementing Cholesky decomposition. 227

We let g denote a functional representing the afore- 228
mentioned differentiable solver for notational convenience, 229
V∗ = g (J,Ka,Ta). Since g is differentiable, we can de- 230
formM0 by propagating upstream gradients from various 231
loss functions to the underlying parameterization J. For in- 232
stance, one may impose a soft constraint on the locations of 233
selected handles during optimization with the objective of 234
the form: 235

Lh = ∥KhV
∗ −Th∥2. (5) 236

We will discuss how such a soft constraint can be blended 237
into our framework in Sec. 3.3. Next, we describe how to 238
incorporate a pretrained diffusion model as a prior for visual 239
plausibility. 240
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Figure 2. The overview of APAP. APAP parameterizes a triangular mesh as a per-face Jacobian field that can be updated via gradient-
descent. Given a textured mesh and user inputs specifying the handle(s) and anchor(s), our framework initializes a Jacobian field as a
trainable parameter. During the first stage, the Jacobian field is updated via iterative optimization of Lh, a soft constraint that initially
deforms the shape according to the user’s instruction. In the following stage, the mesh is rendered using a differentiable renderer R and
the rendered image is provided as an input to a diffusion prior finetuned with LoRA [15] that computes the SDS loss LSDS. The joint
optimization of Lh and LSDS improves the visual plausibility of the mesh while conforming to the given edit instruction.

3.2. Score Distillation for Shape Deformation241

While traditional mesh deformation techniques make varia-242
tions that match the given geometric constraints, their lack243
of consideration on visual plausibility results in unrealistic244
shapes. Motivated by recent success in text-to-3D litera-245
ture, we harness a powerful 2D diffusion prior [43] in our246
framework as a critic that directs deformation by scoring the247
realism of the current shape.248

Specifically, we distill its prior knowledge via Score Dis-249
tillation Sampling (SDS) [39]. Let J denote the current Ja-250
cobian field and V∗ be the set of vertices computed from J251
following the procedure described in Sec. 3.1.252

We renderM∗ = (V∗,F) from a viewpoint defined by253
camera extrinsic parameters C using a differentiable ren-254
derer R, producing an image I = R (M∗,C). The diffu-255
sion prior ϵ̂ϕ then rates the realism of I, producing a gradi-256
ent257

∇JLSDS (ϕ, I) = Et,ϵ

[
w (t) (ϵ̂ϕ (zt; y, t)− ϵ)

∂I
∂J

]
, (6)258

where t ∼ U (0, 1), ϵ ∼ N (0, I), and zt is a noisy latent259
embedding of I. The propagated gradient alters the geom-260
etry ofM by modifying J.261

To increase the instance-awareness of the diffusion262
model, we follow recent work [44, 48] on personalized im-263
age editing and finetune the model using LoRA [15]. In264
particular, we first render M from n different viewpoints265
to obtain a set I = {I1, . . . , In} of training images and266
inject additional parameters to the model, resulting in an267
expanded set of network parameters ϕ′. The parameters are268
then optimized with a denoising loss [43]269

L = Et,ϵ,z

[
∥ϵ̂ϕ′ (zt; y, t)− ϵ∥2

]
, (7)270

where zt denotes a latent of a training image perturbed with271
noise at timestep t.272

The finetuned diffusion prior, together with a learnable273
Jacobian field representation of the source meshM0, com-274

prises the proposed framework described in the following 275
section. 276

3.3. As-Plausible-As-Possible (APAP) 277

APAP tackles the problem of plausibility-aware shape de- 278
formation by harmonizing the best of both worlds: a learn- 279
able shape representation founded on classical geometry 280
processing, robust to noisy gradients, and a powerful 2D 281
diffusion prior finetuned with the image(s) of the source 282
mesh for better instance-awareness. 283

We provide an overview of the proposed pipeline in 284
Fig. 2 and the algorithm in Alg. 1. We will delve into details 285
in the following. Provided with a textured meshM0, han- 286
dles Kh, anchors Ka, as well as their target positions Th 287
and Ta as inputs, APAP yields a plausible deformationM 288
ofM0 that conforms to the given handle-target constraints. 289
Before deformingM0, we renderM0 from a single view in 290
the case of 2D meshes and four canonical views (i.e., front, 291
back, left, and right) for 3D meshes and use the images to 292
finetune Stable Diffusion [43] by optimizing LoRA [15] pa- 293
rameters injected to the model (the red line in Fig. 2). Si- 294
multaneously, APAP computes the Jacobian field J0 of the 295
input meshM0 and initializes it as a trainable parameter J. 296

APAP deforms the input mesh through two stages. In the 297
FirstStage, it first deforms the input mesh according 298
to instructions from users without taking visual plausibility 299
into account. The subsequent SecondStage integrates 300
a 2D diffusion prior into the optimization loop, simultane- 301
ously enforcing user constraints and visual plausibility. 302

At every iteration of the FirstStage illustrated as 303
the blue box in Fig. 2, we compute the vertex positions 304
V∗ corresponding to the current Jacobian field J by solv- 305
ing Eqn. 3 using the anchors specified by Ka as hard con- 306
straints. Then, we compute the soft constraint Lh defined as 307
Eqn. 5 that drags a set of handle vertices KhV

∗ toward the 308
corresponding targets Th. The interleaving of differentiable 309
Poisson solve and optimization of Lh via gradient-descent 310
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Algorithm 1 As-Plausible-As-Possible

Parameters: g,R, ϕ, γ, M , N
Inputs:M0 = (V0,F0), Ka, Kh, Ta, Th, {Ci}ni=1

Output:M

procedure FIRSTSTAGE(J, Ka, Kh, Ta, Th, g)
for i = 1, 2, . . . ,M do

V∗← g (J,Ka,Ta) ▷ Solving Eqn. 4
J← J− γ∇JLh (V

∗,Kh,Th)
end for
return J

end procedure
procedure SECONDSTAGE(J, F0, Ka, Kh, Ta, Th, g,
ϕ, {Ci})

for i = 1, 2, . . . , N do
V∗← g (J,Ka,Ta) ▷ Solving Eqn. 4
M∗← (V∗,F0)
C ∼ U({Ci}) ▷ Viewpoint Sampling
I ← R (M∗,C) ▷ Rendering
J← J− γ∇J (LSDS (ϕ, I) + Lh (V

∗,Kh,Th))
end for
return J

end procedure

ϕ← LORA(ϕ,M0,R, {Ci})
J← {J0,f |f ∈ F0}
J← FIRSTSTAGE(J, Ka, Kh, Ta, Th, g)
J ← SECONDSTAGE(J, F0, Ka, Kh, Ta, Th, g, ϕ,
{Ci})
V← g (J,Ka,Ta)
M← (V,F0)
returnM

is repeated for M iterations. This progressively updates J,311
treated as a learnable black box in our framework, deform-312
ingM0. Consequently, the edited meshM∗ = (J,F0) fol-313
lows user constraints at the cost of the degraded plausibility,314
mitigated in the following stage through the incorporation315
of a diffusion prior.316

The result of FirstStage then serves as an initializa-317
tion for the SecondStage, illustrated as the green box in318
Fig. 2 guided by plausibility constraint LSDS. Unlike the319
FirstStage where the update of J was purely driven320
by the geometric constraint Lh, we aim to steer the op-321
timization based on the visual plausibility of the current322
meshM∗. To achieve this, we renderM∗ using a differen-323
tiable renderer R using the same viewpoint(s) from which324
the training image(s) for finetuning was rendered. When325
deforming 3D meshes, we randomly sample one viewpoint326
at each iteration. The rendered image I is used to evaluate327
LSDS which is optimized jointly with Lh for N iterations.328
The combination of geometric and plausibility constraints329

improves the visual plausibility of the output while encour- 330
aging it to conform to the given constraints. 331

We note that the iterative approach in the FirstStage 332
leads to better results than alternative update strategies such 333
as deforming the source mesh M0 by minimizing ARAP 334
energy [50] or, solving Eqn. 3 using both Kh and Ka as 335
hard constraints. In our experiments (Sec. 4), we show that 336
both methods produce distortions that cannot be corrected 337
by the diffusion prior in the subsequent stage. Specifically, 338
directly solving Eqn. 3 using all available constraints only 339
yields the least squares solution V∗ without updating the 340
underlying Jacobians J, resulting in the aforementioned dis- 341
tortions. 342

4. Experiments 343

We evaluate APAP in downstream applications involving 344
manipulation of 3D and 2D meshes. 345

4.1. Experiment Setup 346

Benchmark. To evaluate the plausibility of a mesh de- 347
formation we propose a novel benchmark APAP-BENCH 348
of textured 3D and 2D triangular meshes spanning both 349
human-made and organic objects annotated with handle ver- 350
tices and their editing directions, and anchor vertices. The 351
set of 3D meshes, APAP-BENCH 3D, is constructed using 352
meshes from ShapeNet [6] and Genie [1]. The meshes are 353
normalized to fit in a unit cube. Each mesh is manually an- 354
notated with editing instructions, including a set of anchors, 355
handles, and corresponding targets to simulate editing sce- 356
narios. APAP-BENCH offers another subset called APAP- 357
BENCH 2D, a collection of 80 textured, planar meshes of 358
various objects, to facilitate quantitative analysis and user 359
study described later in this section. To create APAP- 360
BENCH 2D, we first generate 2 images of real-world ob- 361
jects for each of the 20 categories using Stable Diffusion- 362
XL [38]. We then extract foreground masks from the gen- 363
erated images using SAM [28] and sample pixels that lie on 364
the boundary and interior. The sampled pixels are used for 365
Delaunay triangulation, constrained with the edges along 366
the main contour of the masks, that produces 2D triangular 367
meshes with texture. We assign two handle and anchor pairs 368
to each mesh that imitate user instructions. For evaluation 369
purposes, we populate the reference set by sampling 1, 000 370
images for each object category using Stable Diffusion-XL. 371
The generated images are used to evaluate a perceptual met- 372
ric to assess the plausibility of 2D mesh editing results as 373
described in Sec. 4.3. 374

Baselines. We compare our method (APAP) and As- 375
Rigid-As-Possible (ARAP) [50] since it is one of the widely 376
used mesh deformation techniques that permits shape ma- 377
nipulation via direct vertex displacement. Throughout the 378
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View 1 View 2 View 2 (Zoom In)
Source ARAP [50] Ours Source ARAP [50] Ours Source ARAP [50] Ours

Figure 3. Qualitative results from 3D shape deformation. We visualize the source shapes and their deformations made using ARAP [50]
and ours by following the instructions each of which specifies a handle (red), an edit direction denoted with an arrow (gray), and an anchor
(green). We showcase the rendered images captured from two different viewpoints, as well as one zoom-in view highlighting local details.

experiments, we use the implementation in libigl [19]379
with default parameters.380

Evaluation Metrics. In 2D experiments, we conduct381
quantitative analysis based on k-NN GIQA score [12] as382
an evaluation metric to assess the plausibility of instance-383
specific editing results. The metric quantifies the perceptual384
proximity between the edited image and its k nearest neigh-385

bors in the reference set included in APAP-BENCH 2D. As 386
our objective is to make plausible variations of 2D meshes 387
via deformation, an edited object should remain perceptu- 388
ally similar to other objects in the same category. We use 389
k = 12 throughout the experiments. 390

4.2. 3D Shape Deformation 391

Qualitative Results. We showcase examples of 3D shape 392
deformation where each deformation is specified by a han- 393
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Figure 4. Failure cases of DragDiffusion. DragDiffusion [48]
can easily compromise the identity of edited instances as it manip-
ulates their latents without an explicit parameterization, the iden-
tity of instances can be broken during editing.

dle (red), an edit direction (gray), and an anchor (green).394
As shown in Fig. 3, APAP is capable of manipulating395
3D shapes to improve visual plausibility which is not396
achievable by solely relying on geometric prior such as397
ARAP [50]. For instance, given a user input that drags398
a handle on one blade of an axe (the first row) along an399
arrow, APAP simultaneously expands both blades of the400
axe whereas ARAP [50] produces distortions near the head.401
Similar examples that demonstrate symmetry-awareness of402
APAP can be found in other cases such as a car (the sec-403
ond row), and an owl (the sixth row) where a user lifts only404
one side of the shape upward and the symmetry is recovered405
by APAP which cannot be achieved by ARAP [50]. Also,406
note that APAP is capable of making a smooth articulation407
at the leg of the wolf (the fourth row) by adjusting the over-408
all posture in comparison to ARAP which creates an excess409
bending.410

4.3. 2D Mesh Editing411

Qualitative Evaluation. We present qualitative results412
using the baselines and our method in Fig. 5. Each row413
shows two different results obtained by editing an image414
based on a handle moved from the original position (red)415
along a direction indicated by an arrow (gray) while fixing416
an anchor (green), similar to the 3D experiments discussed417
in the previous section.418

As shown in Fig. 5, ARAP [50] enforces local rigidity419
and often results in implausible deformations. For example,420
it does not account for the mechanics of the human body421
and introduces an unrealistic articulation of a human arm422
(the fourth row). In addition, it twists the body of a sports423
car (the fifth row). Both of them originate from the lack424
of understanding of the appearance of objects. APAP alle-425
viates this issue by incorporating a visual prior into shape426

Methods k-NN GIQA (×10−2) ↑

ARAP [50] 4.753
DragDiffusion [48] 4.545

Ours (Lh Only) 4.797
Ours (ARAP Init.) 4.740
Ours (Poisson Init.) 4.316

Ours 4.887

Table 1. Quantitative analysis for 2D mesh editing. APAP
outperforms its baselines in quantitative evaluation using k-NN
GIQA [12].

Methods Preference (%) ↑

ARAP [50] 40.83
Ours 59.17

Table 2. User study preference for 2D image editing. In a user
study targeting users on Amazon Mechanical Turk (MTurk), the
results produced using ours were preferred over the outputs from
the baseline.

deformation producing a bending near the elbow and pre- 427
serving the smooth silhouette of the car, respectively. 428

While APAP is designed for meshes not images, we pro- 429
vide an additional qualitative comparison against DragDif- 430
fusion [48], an image editing technique that operates in 431
pixel space, to demonstrate the effectiveness of mesh-based 432
parameterization in applications where identity preservation 433
is crucial. As shown in Fig. 4, DragDiffusion [48] may cor- 434
rupt the identity of the instances depicted in input images 435
during the encoding and decoding procedure. APAP, on 436
the other hand, makes plausible variations of the given ob- 437
jects while maintaining their originality, benefiting from an 438
explicit mesh representation it is grounded. 439

Quantitative Evaluation. Tab. 1 summarizes k-NN 440
GIQA scores measured on the outputs from ARAP [50] (the 441
first row) and APAP (the sixth row) using APAP-BENCH 442
2D. As shown, APAP demonstrates superior performance 443
over ARAP [50]. This again verifies the observations from 444
qualitative evaluation where ARAP [50] introduces distor- 445
tions that harm visual plausibility. As in qualitative eval- 446
uation, we also report the k-NN GIQA score of DragDif- 447
fusion [48], degraded due to artifacts caused during direct 448
manipulation of latents. 449

User Study. We further conduct a user study for a more 450
precise perceptual analysis. We follow Ritchie [42] and 451
recruit participants on Amazon Mechanical Turk (MTurk). 452
Each participant is provided with a set of 20 randomly sam- 453
pled images of the source meshes paired with editing results 454
of ARAP [50] and APAP. To check whether the response 455
from a participant is reliable we present 5 vigilance tests 456
and collect 102 responses from the participants who passed 457
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Source ARAP Ours ARAP Ours Source ARAP Ours ARAP Ours

Figure 5. Qualitative results from 2D mesh deformation. 2D meshes are edited using ARAP [50] and the proposed method following
the edit instruction consisting of a handle (red), a target direction (gray), and an anchor (green). We showcase the rendered images of the
edited meshes, as well as a zoom-in view highlighting local details.

the vigilance test.458
We instructed participants to select the most anticipated459

outcome when the displayed source image is edited by the460
dragging operation visualized as an arrow. We have pro-461
vided detailed settings and examples of the user study envi-462
ronment and statistical methods in the supplementary ma-463
terial. Tab. 2 shows a higher preference of the participants464
on our method over ARAP [50] implying that our method465
produces more visually plausible deformations by utilizing466
a visual prior.467

Ablation Study. Tab. 1 summarizes the impact of differ-468
ent initialization strategies in the first stage on k-NN GIQA469
score. As reported in the third row of the table, optimiz-470
ingLh that aims to exclusively satisfy geometric constraints471
leads to unnatural distortions. We provide a qualitative472
comparison in the the supplementary material.473

While designing the algorithm illustrated in Alg. 1, we474
considered other options for FirstStage. Instead of op-475
timizing Lh to initially deform a shape, we used a shape476
produced by ARAP [50] or by solving a Poisson’s equation477
constrained not only on anchor positions but also on handles478
at their target positions reached by following the given edit479
directions. We report k-NN GIQA scores of the alternatives480
in the fourth and fifth row of Tab. 1, respectively. Both ini-481

tialization strategies degrade the plausibility of results due 482
to large distortions introduced by either solely enforcing lo- 483
cal rigidity or, finding least square solutions without updat- 484
ing Jacobians. This poses a challenge to the diffusion prior, 485
making it struggle to induce meaningful update directions 486
when provided with renderings with noticeable distortions, 487
which can be found in qualitative analysis in the supple- 488
mentary material. 489

5. Conclusion 490

We presented APAP, a novel deformation framework that 491
tackles the problem of plausibility-aware shape deformation 492
while offering intuitive controls over a wide range of shapes 493
represented as triangular meshes. To this end, we carefully 494
orchestrate two core components, a learnable Jacobian- 495
based parameterization that originates from geometry pro- 496
cessing and powerful 2D priors acquired by text-to-image 497
diffusion models trained on Internet-scale datasets. We as- 498
sessed the performance of the proposed method against an 499
existing geometric-prior-based deformation technique and 500
also thoroughly investigated the significance of our design 501
choices through experiments. 502
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Linear Subspace Design for Real-Time Shape Deformation. 693
ACM TOG, 2015. 2 694

[56] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan 695
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and 696
diverse text-to-3d generation with variational score distilla- 697
tion. In NeurIPS, 2023. 1, 3 698

[57] Ofir Weber, Mirela Ben-Chen, and Craig Gotsman. Complex 699
barycentric coordinates with applications to planar shape de- 700
formation. Computer Graphics Forum, 2009. 2 701

[58] Ofir Weber, Olga Sorkine, Yaron Lipman, and Craig Gots- 702
man. Context-Aware Skeletal Shape Deformation. Computer 703
Graphics Forum, 2007. 2 704

[59] Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei 705
Ren, Liang Pan, Wayne Wu, Lei Yang, Jiaqi Wang, Chen 706
Qian, Dahua Lin, and Ziwei Liu. OmniObject3D: Large- 707
Vocabulary 3D Object Dataset for Realistic Perception, Re- 708
construction and Generation. In CVPR, 2023. 2 709

[60] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Lan- 710
dreth, and Karan Singh. RigNet: Neural Rigging for Articu- 711
lated Characters. ACM TOG, 2020. 2 712

[61] Zhan Xu, Yang Zhou, Li Yi, and Evangelos Kalogerakis. 713
Morig: Motion-Aware Rigging of Character Meshes from 714
Point Clouds. In SIGGRAPH ASIA, 2022. 2 715

[62] Wang Yifan, Noam Aigerman, Vladimir G. Kim, Chaud- 716
huri Siddhartha, and Olga Sorkine. Neural Cages for Detail- 717
Preserving 3D Deformations. In CVPR, 2020. 2 718

[63] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding 719
Conditional Control to Text-to-Image Diffusion Models. In 720
ICCV, 2023. 3 721

[64] Yuechen Zhang, Jinbo Xing, Eric Lo, and Jiaya Jia. Real- 722
World Image Variation by Aligning Diffusion Inversion 723
Chain. In NeurIPS, 2023. 3 724

[65] Jingyu Zhuang, Chen Wang, Lingjie Liu, Liang Lin, and 725
Guanbin Li. DreamEditor: Text-Driven 3D Scene Editing 726
with Neural Fields. ACM TOG, 2023. 2, 3 727

10


	. Introduction
	. Related Work
	. Geometric Mesh Deformation
	. Data-Driven Mesh Deformation
	. Pretrained 2D Priors for Shape Manipulation

	. Method
	. Representing Shapes as Jacobian Fields
	. Score Distillation for Shape Deformation
	. As-Plausible-As-Possible (APAP)

	. Experiments
	. Experiment Setup
	. 3D Shape Deformation
	. 2D Mesh Editing

	. Conclusion

