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Abstract

Reconstructing realistic 3D human models from monocu-
lar images has significant applications in creative industries,
human-computer interfaces, and healthcare. We base our
work on 3D Gaussian Splatting (3DGS), a scene representa-
tion composed of a mixture of Gaussians. Predicting such
mixtures for a human from a single input image is challeng-
ing, as it is a non-uniform density (with a many-to-one re-
lationship with input pixels) with strict physical constraints.
At the same time, it needs to be flexible to accommodate a
variety of clothes and poses. Our key observation is that
the vertices of standardized human meshes (such as SMPL)
can provide an adequate density and approximate initial
position for Gaussians. We can then train a transformer
model to jointly predict comparatively small adjustments to
these positions, as well as the other Gaussians’ attributes
and the SMPL parameters. We show empirically that this
combination (using only multi-view supervision) can achieve
fast inference of 3D human models from a single image with-
out test-time optimization, expensive diffusion models, or 3D
points supervision. We also show that it can improve 3D
pose estimation by better fitting human models that account
for clothes and other variations. The code is available on the
project website https://abdullahamdi.com/gst/.

1. Introduction
Reconstructing realistic 3D human models from monocular
images is crucial for virtual reality and creative industries,
as well as possibly improving human pose estimation for
human-computer interfaces and health applications. It is
also an integral component of “3D spatial computing” for
mainstream consumer products incorporating 3D vision in
VR and augmented reality (AR). To be practical in homes,
offices, and workplaces, these products require precise 3D
rendering, speed, compactness, flexibility, and realism. How-
ever, reconstructing 3D models from a single image remains
challenging. Previous approaches that have shown success
in this problem often utilize 2D priors in a multi-view setup
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Figure 1. Gaussian Splatting Transformers. We propose a
method that, given a single input image, predicts an accurate 3D
human pose and shape, along with a color model that enables novel
view rendering, including clothing. GST relies solely on multi-view
supervision (no direct 3D supervision).

[8, 14, 20, 32, 36, 38, 40, 45–47, 57]. Specifically, in human
modeling, issues arise due to intricate 3D details such as fa-
cial features, clothing, and joints, which present challenges
for deep learning methods. Early methods addressed these
challenges using a learned Signed Distance Function (SDF)
on a human template to predict detailed 3D meshes [53, 70].
Later works incorporated Neural Radiance Fields (NeRFs) to
capture texture details [24, 61], or leveraged pre-trained dif-
fusion models to generate dense views from a single frontal
image, reducing prediction ambiguity [7, 16, 22, 61, 65, 71].
However, they typically suffer from low speed, hindering
real-time deployment.

In this work, we present GST (Gaussian Splatting Trans-
former), illustrated in Fig. 1, a direct method that learns to
predict 3D Gaussian Splatting [28] for 3D representation,
allowing for fast rendering and flexible editing abilities com-
pared to others. Our method does not rely on diffusion priors
and is, therefore, capable of near real-time predictions. This
is essential for downstream applications and ensures that
the inference can be easily incorporated with prior-based
approaches. GST leverages multi-view supervision instead
of precise (and expensive) 3D point clouds. Despite this, it
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Table 1. Single Image 3D Human Reconstruction Methods. Comparison of various 3D representation models, highlighting key attributes
such as speed, method of obtaining the model, type of 3D representation, usage of diffusion prior, and supervision technique.

Method Speed Obtained by 3D Representation Diffusion Prior Supervision

PIFU [53] 10 seconds Inference SDF ✗ Direct 3D
HumanLRM [61] 7 seconds Inference NeRF (Triplane) ✓ Direct 3D + MV
SiTH [22] 2 minutes Inference SDF ✓ Direct 3D
SIFU [71] 6 minutes Optimization SDF ✓ Direct 3D
GTA [70] 0.55 seconds Optimization SDF ✗ Direct 3D
SHERT [65] 23 seconds Inference Mesh ✓ Direct 3D
R2Human [13] 0.04 seconds Inference NeRF (MLP) ✗ Direct 3D
ConTex-Human [16] 60 minutes Optimization NeRF+Mesh ✓ Direct 3D
Ultraman [7] 20 minutes Optimization Mesh ✓ ✗
ANIM [44] few seconds Inference SDF ✗ Direct 3D
SHERF [24] 0.75 seconds Inference NeRF (MLP) ✗ Multi-View

GST (ours) 0.02s seconds Inference Gaussian Splatting ✗ Multi-View

predicts accurate 3D joint and body poses while maintain-
ing the perceptual quality of renderings from novel views.
Table 1 summarizes the characteristics of prior work.

GST is inspired by recent works on single view 3D recon-
struction [56]. However, the complexity of human pose in
3D space poses significant challenges to the direct applica-
tions of methods that associate one 3D point (or Gaussian) to
each pixel. Therefore, we augment our model also to predict
the pose parameters of the SMPL [37] model. The SMPL
model is used as the scaffolding on which the Gaussians are
positioned and rendered. Each Gaussian is loosely tied to a
vertex on the SMPL model by an offset. This has two advan-
tages. First, it provides a good initialization of the density
and pose of the Gaussians, including back faces, which are
notoriously difficult for single-view methods. Second, we
find that the joint optimization of pose and appearance also
improves the SMPL pose prediction.

To the best of our knowledge, GST is the first work that
efficiently combines accurate 3D human prediction with im-
proved visual quality, utilizing only multi-view supervision
and without relying on diffusion priors. In summary, our
contributions are the following:

1) We propose GST, a 3D human model prediction
method that does not rely on diffusion priors and performs
novel view synthesis from a single image input. This makes
it particularly amenable to real-time modeling tasks, where
multiple views are uneconomical or impractical.

2) We evaluate our method and compare it to other state-
of-the-art models. Although prior methods only solve for 3D
pose estimation or 3D reconstruction, our method still per-
forms equally or better on perceptual and 3D pose estimation
metrics without 3D supervision.

2. Related work
3D Reconstruction using Image Priors. In the area of
prior-based 3D reconstruction, contemporary zero-shot text-
to-image generators [2, 14, 48, 49, 51, 52] have shown
significant improvement by leveraging enhanced synthe-
sis priors [6, 9, 39, 45, 60]. DreamFusion [45] stands
out as a pioneering work that distilled a pre-existing dif-
fusion model [52] into a NeRF framework [3, 41] using
text prompts. This innovation spurred further research in
both text-to-3D synthesis [8, 32] and image-to-3D recon-
struction [36, 38, 46, 54]. The latter approach leverages
supplementary reconstruction losses focused on frontal cam-
era perspectives [36] and subject-specific diffusion guid-
ance [46, 47]. In addition, task-specific priors have been
explored [23, 26, 50], as well as additional control mecha-
nisms [40]. More recently, Gaussian-Splatting approaches
[21, 28] have improved the efficiency of 3D generation op-
timization through rapid Gaussian Splatting rasterization
[57, 58, 68]. In contrast, our method GST does not rely on
diffusion priors, providing a simpler and more cost-effective
framework specialized for human 3D reconstruction and
jointly predicts the precise internal 3D human body joints.

3D Human Pose Estimation. Many approaches in the lit-
erature focus on predicting 3D human pose and shape from
a single image [10, 18, 27, 30, 33, 34]. Relevant for our
work are the approaches that directly regress the body shape
and pose from a single image. The first work to introduce
this approach was HMR [27], which uses a CNN to regress
SMPL [37] parameters. Dedicated designs have been pro-
posed for the HMR architecture; HoloPose [19] suggests a
pooling strategy based on the 2D locations of body joints,
while HKMR [17] relies on SMPL hierarchical structure to
make predictions. PARE [29] introduces a body-part-guided
attention mechanism to handle occlusions better, and Py-
MAF [66, 67] incorporates a mesh alignment module for
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Figure 2. Overview of the pipeline of Gaussian Splatting Transformer (GST). Given a single input image, GST uses a Vision Transformer
(ViT) to predict both a 3D human pose (in the form of SMPL parameters) and a refined full-color 3D model (in the form of 3D Gaussian
Splats). Additional input tokens facilitate the output of individual Gaussians’ color c, opacity α, scale, rotation, and position offset δ. Each
Gaussian’s position µ is relative to one vertex of the SMPL model v by the offset δ, and so this model can be considered a refinement or
residual over the interpretable SMPL mesh, facilitating multi-view rendering with higher visual fidelity.

SMPL parameter regression. More recently HMR2 [18]
utilizes a transformer to predict the SMPL parameters and
train on a large pool of 3D data and unprotected 2D joint
labels, while TokenHMR [12] improved HMR2 by leverag-
ing tokenized encoding and reduced the 2D basis in training
HMR2. In contrast to all of these methods, our GST does
not rely on 3D supervision and utilizes novel view synthesis
training of a transformer to predict the Gaussian splats that
are grounded on predicted SMPL parameters.
Monocular 3D Human Reconstruction. Recent advance-
ments in 3D human reconstruction from single images
have resulted in diverse methods, each employing different
data sources, 3D representations, and supervision strategies
[7, 13, 16, 22, 24, 25, 44, 61, 64, 65, 70, 71]. PIFU [53] is
one of the earlier works that successfully uses the learned
Sign Distance Function (SDF) representation with direct 3D
supervision to reconstruct a detailed 3D mesh of humans
from a single image. ANIM [44] incorporates sparse voxel
depth features with the input image features and uses di-
rect 3D supervision to train on the RGBD input (depth is
needed). SHERF [24] developed on PIFU’s 3D representa-
tion and adopted a NeRF representation for decoding the 3D
human, training with multi-view supervision. While GST
follows SHERF in the multi-view supervision, we utilize the
more explicit Gaussian Splatting representation [28] for 3D,
allowing for more flexible control and better 3D alignment.
Similar to our method, A-NeRF [55] jointly optimizes hu-
man pose and 3D reconstruction, however it takes videos as
input and does not generalise to unseen subjects.

With the recent wave of success of generative image and

text models [42, 48, 49, 51, 52], several methods try to lever-
age these foundation models to improve the performance
of 3D human reconstruction [7, 13, 16, 22, 61, 71]. For
example, SIFU [71] integrates GPT-predicted captions with
diffusion models for back-view generation and texture refine-
ment and builds on GTA [70], its predecessor, which learns
a triplane SDF decoder. Similarly, SiTH [22] employees
Diffusion-prior to generate back views and decode the SDF
and texture colours, while HumanLRM [61] generate multi-
views with pre-trained diffusion and then train a tri-plane
NeRF Large Reconstruction Model (LRM) for decoding.
SHERT [65] utilizes semantic mesh and whole texture in-
painting with the help of diffusion priors to create detailed
3D Mesh of humans. Most of these methods use pre-trained
diffusions to improve the texturing with optimization, which
slows down the process and prevents scaling for long videos,
unlike our GST, which does not use any diffusion priors and
runs at almost real-time inference, allowing for flexibility
and potential integration with priors.

3. Gaussian Splatting Transformers (GST)
This section presents our methodology for reconstructing 3D
human models from a single image using Gaussian Splatting
Transformers (GST), as illustrated in Fig. 2.

3.1. Architecture

Our model predicts 3D Gaussian splatting parameters from
a single input image using a transformer architecture, includ-
ing tokenization, processing through transformer blocks, and

3



decoding into Gaussian parameters. We detail the model
architecture (3.1) and the loss functions (3.2).
Image Encoder Architecture. Our backbone follows
HMR2 [18] and uses a ViT [11] to map an image to a series
of visual tokens. The input is an RGB image X ∈ RH×W×3,
which is divided into non-overlapping patches pj ∈ Rp×p×3,
with j ∈ {1, . . . ,HW/p2}. The patches are vectorized and
affinely transformed into patch tokens xj ∈ Rd.

The patch tokens are processed through a series of Trans-
former blocks [59]. The final output is a set of tokens
yj ∈ Rd encapsulating the transformed image information.
Human Shape Representation. The SMPL model [37]
represents the 3D human mesh shape as a mesh. SMPL is a
low-dimensional parametric model defined by pose parame-
ters θ ∈ R24×3×3 and shape parameters β ∈ R10, outputting
mesh vertices’ 3D positions v = SMPL(θ,β) ∈ R6890×3.
Decoder Architecture. We build on HMR2 [18], which
predicts the SMPL representation (θ,β) from the image rep-
resentation yj through a cross-attention mechanism. Specifi-
cally, a single (fixed) token tSMPL attends to all image tokens
yj through a series of cross-attention layers. An MLP de-
codes the token into the pose parameters θ and β.

This representation could be learned with image-pose
pairs (X,θ,β). However, here we focus on multi-view
supervision, as 3D supervision is costly and scarce.

To train with multi-view supervision, the model needs to
generate an image. We use recent advances in fast neural
rendering: Gaussian Splatting [28]. This scene representa-
tion is defined by a set of 3D Gaussians, each characterized
by a mean position µ ∈ R3, a covariance matrix Σ ∈ R3×3,
the opacity α ∈ R and a colour c ∈ R3.

We link the 3D body shape and pose with the Gaussian
scene representation, such that each vertex vn in the mesh is
assigned a Gaussian Gn = (µn,Σn, αn, cn). We allow the
Gaussians to move away from the original vertex positions
by a learned offset δn to model clothes and other visual
shape features that the SMPL model cannot capture.

µn = vn + δn, (1)

This combination ensures the 3D model captures both shape
and appearance, allowing more realistic reconstructions.

Similar to prior work [56], we factorize and simplify
the covariance into the product of a rotation matrix and a
diagonal matrix, enforcing a reduced number of degrees of
freedom from 9 to 6: Gn ∈ R14.

It is theoretically possible to assign five tokens per Gaus-
sian, one for each parameter: rotation, offset, scale, color,
and opacity. However, this would result in over 34k tokens,
which is computationally infeasible to decode with a stan-
dard Transformer. We thus group vertices into K groups,
reducing the number of tokens to 5K + 1 (in practice, we
set K = 26). As discussed before, the additional token is
used to predict the SMPL shape parameters.

This representation allows initialization with the pre-
trained weights of HMR2 [18] since we only introduce addi-
tional (fixed but learned) tokens in the decoder architecture.
A set of Gaussians can be assembled from the predictions,
which can be rendered into an image from any viewpoint.

3.2. Loss Functions
We use a combination of losses to train our model to ensure
accurate and visually realistic 3D reconstructions.
Image Reconstruction Loss. We use a combination of
Mean Squared Error (MSE) to measure the difference be-
tween the M multi-view ground truth images Îi and rendered
images Ii, a perceptual loss to capture high-level features
and textures with LPIPS metric [69], and a masked loss on
the rendered opacity Iαi to remove background splats [68]:

Limg =
1

M

M∑
i=1

(∥∥∥Îi − Ii

∥∥∥2
2
+ λperceptual · LPIPS(Îi, Ii)

+ λα

∥∥∥M̂i − Iαi

∥∥∥2
2

)
,

(2)
where M̂i is the background mask of the ground truth images
Îi, and λperceptual and λα are weighting hyperparameters for
the perceptual and transparency losses respectively. The
transparency loss is necessary to reduce floating Gaussians
that do not contribute to the foreground object.
Gaussian Tightness Regularization. To ensure that the
predicted Gaussian Splats in Sec. 3.1 follow the SMPL
parameters closely, we introduce a Gaussian tightness reg-
ularization that ensures the generated Gaussian splats [28]
do not diverge and remain faithful to the underlying SMPL
parameters as follows:

Ltight =
1

V

V∑
n=1

∥δn∥2 , (3)

where δn is defined in (1) and V = 6890 is the number of
Gaussian splats (number of vertices in SMPL).

The total loss function is a weighted sum of the image
losses (MSE, perceptual, and alpha) and tightness:

L = Limg + λtightLtight, (4)

where λtight is the weighting hyperparameter for the tightness
regularization. As we show later in Sec. 5.3, this regular-
ization plays an important role in the precision of the 3D
human body predicted by GST. By minimizing this com-
bined loss, our GST model learns to generate accurate and
visually pleasing 3D reconstructions from a single image.

4. Experiments
In this section we describe our evaluation setup and the
baselines for our comparisons.
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Figure 3. 3D SMPL Shape. 3D human body results of our GST on two subjects of HuMMan [4] dataset compared to Ground Truth
renderings, Ground Truth SMPL parameters [37], and SMPL predictions of HMR2 [18]. The overlay of the 3 SMPL bodies (ours, HMR2,
and GT) shows that our predicted SMPL is more precise, while our predicted Gaussian splats maintain visual quality from novel views.

4.1. Datasets and Metrics

Datasets. Similar to previous works [24], we utilize four
comprehensive human datasets for evaluation: THuman [72],
RenderPeople [1], ZJU MoCap [43], and HuMMan [4]. For
ZJU MoCap, the dataset is divided following the SHERF
setup [24]. Similarly, for HuMMan, we adhere to the official
split (HuMMan-Recon), using 317 sequences for training
and 22 for testing, with 17 frames sampled per sequence. For
THuman, we select 90 subjects for training and 10 for testing,
and for the RenderPeople dataset, we randomly sample 450
subjects for training and 30 for testing. Those four datasets
used for evaluation above are all small in terms of subject
diversity. To showcase the capabilities of GST on a large
dataset, we train our GST also on the TH21 dataset [63],
which contains 2,500 3D scans, with diverse subject diversity.
We randomly select 200 scans for evaluation.
Evaluation Metrics. When the Ground Truth 3D SMPL
parameters are available as in RenderPeople [1] and HuM-
Man [4], we adopt 3D Human Joints precision MPJPE as a
metric [27]. MPJPE refers to Mean Per Joint Position Error:
the average L2 error across all joints after aligning with the
root node. To quantitatively assess the quality of rendered
novel view and novel pose images, we report peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM),
and Learned Perceptual Image Patch Similarity (LPIPS)[69].

Consistently with prior works[15, 24, 72], we project the 3D
human bounding box onto each camera plane to derive the
bounding box mask, subsequently reporting these metrics
based on the masked regions.
Baselines. In addition to earlier works on Human NeRF with
multi-view setting, NHP [31] and MPS-NeRF [15], we com-
pare to recent single-image methods SHERF [24] for novel
view synthesis and HMR2 [18] and TokenHMR [12] for 3D
Human reconstruction precision. Different from SHERF,
our method does not take as input ground truth SMPL pa-
rameters, therefore we adapt SHERF to use HMR2 [18] or
TokenHMR [12] SMPL predictions for a fair comparison
to our method. We also include a fast and salable Splatter
Image [56], a state-of-the-art single image 3D reconstruction
method for novel view synthesis tables.

4.2. Implementation Details of GST

Our model follows the implementation of HMR2 [18] for
the predictions of SMPL parameters. We extend the HMR2
decoder implementation to process some additional learnable
tokens for the predictions of the Gaussian parameters. The
Gaussian parameters (color, rotation, scale, opacity, offset)
are predicted for K = 26 groups of 265 Gaussians. The
token output is passed through a linear layer to obtain the
final parameters. We use pre-trained weights from HMR2
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Table 2. Human Novel View Synthesis and 3D Keypoints Evaluation Performance Comparison. We compare GST on the RenderPeople
[1] and HuMMan [4] datasets. For each dataset, we report PSNR, SSIM, and LPIPS for novel view synthesis, as well as MPJPE (in mm) for
3D keypoints evaluation. The top section methods use the Ground Truth input SMPL parameters, which are shown for reference, while the
bottom section methods only use the single image input (our setup). ↑ means the larger is better; ↓ means the smaller is better.

Method
RenderPeople HuMMan

GT 3D Novel View 3D Shape Novel View 3D Shape
input PSNR↑ SSIM↑ LPIPS↓ MPJPE (mm)↓ PSNR↑ SSIM↑ LPIPS↓ MPJPE (mm)↓

NHP [31] ✓ 20.59 0.81 0.22 0.000 18.99 0.84 0.18 0.000
MPS-NeRF [15] ✓ 20.72 0.81 0.24 0.000 17.44 0.82 0.19 0.000
SHERF [24] w/ GT ✓ 22.88 0.88 0.14 0.000 20.83 0.89 0.12 0.000

HMR2 [18] ✗ - - - 101.0 - - - 133.4
TokenHMR [12] ✗ - - - 77.9 - - - 91.4
SHERF [24] w/ [18] ✗ 13.55 0.62 0.37 101.0 18.00 0.85 0.18 133.4
SHERF [24] w/ [12] ✗ 15.24 0.70 0.33 77.9 16.41 0.84 0.17 91.4
GST (Ours) ✗ 17.80 0.81 0.25 67.6 18.40 0.87 0.14 64.6

Table 3. Novel View Synthesis Performance Comparison. We
compare GST on the ZJU_MoCap [43] and THuman [72] datasets
on novel view synthesis. The top section methods use the Ground
Truth input SMPL parameters (allowing for changing the pose) and
are shown for reference, while the bottom section methods only
use the single image input (our setup).

Method
ZJU MoCap THuman

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

PixelNeRF [62] - - - 16.51 0.65 0.35
NHP [31] 21.66 0.87 0.17 22.53 0.88 0.17
MPS-NeRF [15] 21.86 0.87 0.17 21.72 0.87 0.18
SHERF [24] /w GT 22.87 0.89 0.12 24.66 0.91 0.10

Splatter Img [56] 19.50 0.80 0.28 19.20 0.80 0.20
SHERF [24] /w [18] 19.11 0.81 0.21 17.27 0.85 0.16
SHERF [24] /w [12] 20.72 0.85 0.16 19.29 0.84 0.18
GST (Ours) 21.26 0.85 0.16 16.34 0.84 0.20

for the ViT and the decoder and freeze the ViT weights
during training. For our experiments, we use the loss weights
Lperceptual = 0.01, Lα = 0.1, Ltight = 0.1, and we train on
square image crops of size 256. We train on a single A6000
GPU with a batch size of 32 for 3 days. At test time, GST
can simultaneously perform 3D human pose estimation and
3D reconstruction in a single forward pass at 47fps.

5. Results
In this section, we discuss the results obtained on four
datasets in various evaluation settings.

5.1. 3D Human Shape Results

The primary focus of this work is the ability to infer a precise
3D human body from a single image without explicit 3D
supervision. We show quantitative results in Table 2 on Ren-
derPeople [1] and HuMMan datasets [4]. We compute the
MPJPE error with respect to the ground truth SMPL joints
before and after training. The results show that without ex-

plicit 3D supervision, our training improves the quality of
the pose estimation from the pretrained HMR2 [18] and To-
kenHMR [12]. Furthermore, Fig. 3 shows some examples of
our predictions in comparison with the HMR2 initialization
and the ground truth SMPL pose. Our poses visually appear
better aligned to the ground truth, emphasizing the results
in Table 2. During training, the shape of the SMPL models
also changes, with the 3D human shape becoming thinner.
SMPL models human body shape without clothing. Our
method decouples the body shape from additional layers,
such as clothing. We hypothesize that this leads the model to
estimate the underlying body shape of the human, effectively
using the offsets to model clothes and other deformations.

5.2. Novel View Synthesis Results

We evaluate our method in the task of novel view synthesis
across 4 datasets and compare the results with SHERF [24].
For a fair comparison with our method, which does not
assume ground truth SMPL parameters are available, we
evaluate SHERF using the estimated HMR2/TokenHMR
pose and shape parameters instead of the ground truth ones.
Our results are in Tables 2 and 3. Visual results are shown
in Figures 4, 5 and 6. Note that the underlying 3D body is
consistent, despite a slight blurriness of the Gaussians, and
follows precise 3D geometry.

To showcase the capabilities of GST on a large dataset, we
train our GST on multi-view images rendered from the TH21
dataset [63], which contains 2,500 3D scans and shows the
results on 200 randomly sampled test scans in Table 4 and
Fig.7. It clearly shows less blurriness than the other datasets.
For reference, we include Splatter Image [56] in Table 4,
where our GST predicts precise 3D body pose and shape
in addition to the renderable representation unlike Splatter
Image.
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Input Image SHERF [24] w/ [18] Renderings GST (ours) Renderings GT Renderings

Figure 4. Single Image NVS. GST on 4 subjects of HuMMan [4] dataset compared to Ground Truth renderings, and SHERF [24] (after
being adapted with HMR2 to work with single image input only). GST depicts the correct human pose (compared with ground truth).

Input Image SHERF [24] w/ [18] Renderings GST (ours) Renderings GT Renderings

Figure 5. Single Image NVS on 2 subjects of Zju-Mocap [43] compared to SHERF [24] (after being adapted with HMR2 to work with
single image input only). GST shows improved visual quality, especially when comparing the depicted pose to ground truth.

Table 4. Novel View Synthesis on Large-Scale TH21. We com-
pare GST to fast and large-scale multi-view baseline [56] that do
not need 3D annotations on the 2,500 examples from TH21 [63].
Unlike Splatter Image [56], our GST predicts precise 3D body pose
and shape in addition to the renderable representation.

Method Output Novel View
3D Body PSNR↑ SSIM↑ LPIPS↓

Splatter Img [56] ✗ 23.74 0.91 0.10
GST (Ours) ✓ 22.20 0.90 0.09

5.3. Ablation and analysis

Ablation Study. We present an ablation study of different
design choices and key elements in our architectures and
losses and their effect on the 2D and 3D results of a single
image to 3D of humans on the HuMMan dataset [4] in Ta-

Table 5. Ablation study. We show an ablation study on HuMMan
Dataset [4] where the left shows the design choices and the right
part shows the results. For each setup, we report PSNR, SSIM, and
LPIPS for novel view synthesis, as well as MPJPE (in mm) for 3D
keypoints evaluation.

LPIPS
loss

Tightness
loss

Transparency
loss

Novel View 3D Shape

PSNR↑ SSIM↑ LPIPS↓ MPJPE (mm)↓

✓ ✓ 21.77 0.87 0.12 82.3
✓ ✓ 21.80 0.86 0.15 53.6

✓ ✓ 21.77 0.87 0.12 52.3
✓ ✓ ✓ 21.79 0.87 0.12 50.8

ble 5. For these experiments, we report PSNR, SSIM and
LPIPS metrics computed on the entire image. It shows the
importance of combining the LPIPS, tightness, and trans-
parency loss on the final 3D precision while maintaining the
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Figure 6. Visualization of Single Image Novel View Synthesis Results on RenderPeople. We show single image novel view synthesis
results on two subjects of RenderPeople [1] dataset of our GST (top row) compared to Ground Truth renderings (bottom row) of each subject.

Figure 7. Scaling Up Training of GST on TH21. We show render-
ing results for GST (top row) compared to Ground Truth renderings
(bottom row) of each subject. The training of 2,500 subjects in
TH21 [63] reduces the blurriness observed in other datasets and
demonstrates the scalability merit of our GST Transformer training.

Input Image GT SMPL Out SMPL SMPL overlays

Figure 8. Tightness Regularization. Renderings and SMPL mod-
els with (top) and without (bottom) tightness regularization. The
regularization maintains a precise body shape and pose.

visual fidelity intact. The tightness regularization of (3) has
the highest impact on 3D precision, as it favors solutions

in which the majority of the pose corrections are obtained
with the SMPL parameters, and the Gaussians are only used
for small refinements. In contrast, removing the tightness
regularization encourages unrealistic and less precise poses,
with much larger adjustments obtained with the Gaussian
offsets. We also visualize this effect in Fig. 8. We conduct
additional ablations in the Appendix.
3D Pose Estimation from Sparse Views. We train GST
on the common 3D pose estimation dataset Human3.6M [5]
using the default split for train and test subjects (subjects 9
and 11 are used for testing). This dataset is not ideal for our
method as it only has 4 views and very few subjects, there-
fore it’s difficult to generalise to unseen poses and subjects.
Additionally, the human masks provided with the dataset are
not always precise and our method tends to model parts of
the background together with the human. This affects the
quality of both the visual results and the 3D pose estimation.
The visual metrics for our GST are evaluated on a squared
crop of size 256x256 around the human with a PSNR of
18.68 and a 3D error of MPJPE ↓ = 63.7 mm compared to
50.0 mm for HMR2 [18].

6. Conclusions and Discussion

In this paper, we introduced GST, a novel approach for hu-
man 3D representation that predicts 3D Gaussian Splatting
[28], enabling fast rendering with accurate poses. GST lever-
ages multi-view supervision to accurately predict 3D joint
and body poses while preserving the perceptual quality of
novel view renderings. This dual capability combines pre-
cise pose estimation with high-quality rendering, bridging
two research paradigms and showcasing the benefits of our
approach (See Fig. 3).
Limitations. The main limitation in our method is the re-
quirement of multi-view datasets to train. Another issue is
the slight blurriness that appears on some of the renderings
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as a result of the generalization limitation of the transformer
trained on very small datasets we employ (in terms of sub-
ject diversity). A possible solution to this is to use multiple
datasets or bigger datasets.
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A. Additional Results and Analysis
A.1. Additional Ablations

In addition to the ablations described in Table 5 in the main
paper, we report here three variations to the GST model that
did not result in a performance improvement. The ablations
are provided in Table I.

More Gaussians. The first design change we tested is an
increase in the number of Gaussians per vertex. We increase
the number of splats by predicting two or three independent
offsets per vertex. Because random initialization breaks the
symmetry, the model can learn to move each splat indepen-
dently even though all two/three are anchored to the same
vertex. Contrary to our assumption, an increase in the num-
ber of splats did not result in a increased visual quality of
the renderings.

Setting Opacity to 1. Predicting opacity is not strictly nec-
essary to render humans, therefore we tried simplifying the
model by removing this parameter. We removed the opacity
prediction during training and manually set the opacity to 1
for all the Gaussians.

Single-view + Multi-view Images. Next, to increase the
subject diversity in the small datasets we use, we tried includ-
ing some single view images in our training pipeline. For
this experiment, we use crops of images containing humans
from the MSCOCO dataset [35]. The single view images are
used for training together with the multi-view images from
the original dataset. For the single view images, the model
predictions are supervised using the same input image. The
results do not show any notable improvement.

Table I. Additional Negative Ablations. For completeness, we
show additional ablations on HuMMan Dataset [4] that did not
give positive improvements to our best setup of Table 5 in the main
paper. For each setup, we report PSNR, SSIM, and LPIPS for
novel view synthesis, as well as MPJPE (in mm) for 3D keypoints
evaluation.

Ablation setup Novel View 3D Shape
PSNR↑ SSIM↑ LPIPS↓ MPJPE (mm)↓

our best model 21.79 0.87 0.12 50.8
2 Gaussians per vertex 21.25 0.87 0.12 50.1
3 Gaussians per vertex 21.18 0.87 0.12 53.2

setting opacity to 1 21.17 0.87 0.11 58.4
single-view + multi-view 21.47 0.87 0.12 53.4

A.2. Overfitting Example

To test that the number of Gaussians is sufficient to produce
sharp details, we train our model to overfit a single data
sample. We obtain an almost perfect reconstruction with
PSNR of 41. Image I shows examples of the renderings
we obtained. This result confirms our assumption that with
a large enough dataset, our model would be able to learn

sharper details than it currently learns on the small scale
datasets.

A.3. Additional Details for TH21 Experiment

For the TH21 [63] experiment in Table 4 in the main report,
we use 72 views rendered in a loop around the subject. We
train both our method and Splatter Image [56] using 256x256
images. Despite our model performing worse than Splatter
Image in terms of visual metrics, our model also predicts the
SMPL paramters for 3D pose estimation. This is both useful
for downstream tasks, but also ensures that the underlying
3D shape is plausible for a human. This difference can
be noticed in the examples in Figure II, where GST can
reconstruct a plausible human shape despite the uncommon
input pose, while Splatter Image fails to reconstruct arms
and legs.

A.4. HMR2 Finetuning Comparison

As we discussed in the main paper, we train GST starting
from a pretrained version of HMR2 [18] and the resulting
model almost halves the MPJPE error on the two datasets,
compared to the original pretrained version. We now instead
compare GST with a finetuned version of HMR2 to test the
quality of the 3D pose estimation of our method.

Table II. HMR2 finetuning comparison MPJPE (in mm) for 3D
keypoints evaluation.

Method 3D annotations RenderPeople HuMMan
MPJPE (mm)↓ MPJPE (mm)↓

GST ✗ 64.6 67.6
HMR2 [18] pretrained ✗ 101.0 133.4

HMR2 [18] finetune w/ 2D data ✗ 127.40 163.77
HMR2 [18] finetune w/ 2D + 3D data ✓ 57.33 61.20

We finetune HMR2 on the two datasets in Table 2 in the
main paper: HuMMan [4] and RenderPeople [1]. The results
are reported in Table II. To reproduce a similar training setup
to our method (that does not require any 3D ground truth
annotations), we finetune HMR2 using only 2D keypoints
annotations. We use images from all views in the dataset,
but restrict the supervision to only use the 2D keypoints loss.

The results show that the 2D information alone is not
enough for HMR2 to improve the quality of the 3D pose
estimation on the two datasets, and the finetuned model
MPJPE error is worse than the pretrained one.

For completeness, we also report the errors when finetun-
ing HMR2 with additional 3D annotations: 3D keypoints
and ground truth SMPL parameters. We would like to em-
phasize that we think this is an unfair comparison to our
method, since our method does not use ground truth SMPL
parameters or 3D keypoints for training. The MPJPE of the
HMR2 version finetuned with 3D data is only 7mm better
than ours on RenderPeople and 6mm better than ours on
HuMMan.
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Renderings

Ground truth

Figure I. Overfitting to a single sample. Ground truth (top) and renderings (bottom) of our model results when overfitting to a single data
sample.

Splatter Image

GST (ours)

Ground truth

Figure II. Splatter Image comparison. Side view comparison with Splatter Image [56] on TH21 [63] for unusual input poses. Input image
on the left, Splatter Image rendering in the first row, GST renderings in the second row.

B. Additional Visualizations
We provide some additional examples of novel view synthe-
sis and 3D pose estimation results.
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Figure III. Results in TH21 [63]. Rendering results for GST (top row) compared to Ground Truth renderings (bottom row) of each subject.
An example of loose clothes is in the last row.
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Input Image GT View Out View GT Ours HMR2 [18] SMPL Overlays

Figure IV. Additional 3D SMPL Shape Results for the RenderPeople dataset [1]. We show 3D human body results of our GST on three
subjects of RenderPeople [1] dataset compared to Ground Truth renderings, Ground Truth SMPL parameters [37], and SMPL predictions of
HMR2 [18]. The overlay of the 3 SMPL bodies ( ours, HMR2, and GT) shows that our predicted SMPL is more precise while our predicted
Gaussian splats maintain visual quality from novel views.

15



Input Image GT View Out View GT Ours HMR2 [18] SMPL Overlays

Figure V. Additional 3D SMPL Shape Results for the HuMMan dataset [4]. We show 3D human body results of our GST on three
subjects of HuMMan [4] dataset compared to Ground Truth renderings, Ground Truth SMPL parameters [37], and SMPL predictions of
HMR2 [18]. The overlay of the 3 SMPL bodies ( ours, HMR2, and GT) shows that our predicted SMPL is more precise while our predicted
Gaussian splats maintain visual quality from novel views.
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Figure VI. Visualization of Single Image Novel View Synthesis Results on HuMMan. We show single image novel view synthesis results
on 7 subjects of HuMMan [4] dataset of our GST (top row) compared to Ground Truth renderings (bottom row) of each subject.17



Figure VII. Visualization of Single Image Novel View Synthesis Results on THuman. We show single image novel view synthesis results
on 5 subjects of THuman [72] dataset of our GST (top row) compared to Ground Truth renderings (bottom row) of each subject.
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Figure VIII. Visualization of Single Image Novel View Synthesis Results on RenderPeople. We show single image novel view synthesis
results on 6 subjects of RenderPeople [1] dataset of our GST (top row) compared to Ground Truth renderings (bottom row) of each subject.
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