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Abstract

Recent advances in Neural Radiance Fields (NeRFs) treat
the problem of novel view synthesis as Sparse Radiance Field
(SRF) optimization using sparse voxels for efficient and fast
rendering [14, 40]. In order to leverage machine learning
and adoption of SRFs as a 3D representation, we present
SPARF, a large-scale ShapeNet-based synthetic dataset for
novel view synthesis consisting of ∼ 17 million images ren-
dered from nearly 40,000 shapes at high resolution (400
× 400 pixels). The dataset is orders of magnitude larger
than existing synthetic datasets for novel view synthesis and
includes more than one million 3D-optimized radiance fields
with multiple voxel resolutions. Furthermore, we propose
a novel pipeline (SuRFNet) that learns to generate sparse
voxel radiance fields from only few views. This is done by
using the densely collected SPARF dataset and 3D sparse
convolutions. SuRFNet employs partial SRFs from few/one
images and a specialized SRF loss to learn to generate high-
quality sparse voxel radiance fields that can be rendered
from novel views. Our approach achieves state-of-the-art re-
sults in the task of unconstrained novel view synthesis based
on few views on ShapeNet as compared to recent baselines.
The SPARF dataset will be made public with the code and
models on the project website abdullahamdi.com/sparf.

1. Introduction
Although we observe the surrounding world only as a

stream of 2D images, it is undeniably 3D. The goal of recov-
ering this underlying 3D from 2D observations has been a
longstanding goal of computer vision. The task of inverting
the rendering process that creates the 2D projections we ob-
serve by trying to construct the 3D world is known as Vision
as Inverse Graphics (VIG) [8,22,26,67]. With the emergence
of deep learning applications in computer graphics and the
availability of 3D datasets, several approaches address the
3D generation task directly from 3D, without relying on ap-
pearance [1,19,27,41,46,61]. However, recent developments
in differentiable rendering have refueled the VIG direction,
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Figure 1. Distribution of Radiance Fields. We treat Sprase Radi-
ance Fields (SRFs) as a 3D data structure, and learn the conditional
generation of SRFs from few input images for the task of novel
view synthesis. In order to do this, we build SPARF, a large-scale
dataset of SRFs.

which facilitates using gradients of the rendering process to
optimize for the underlying 3D setup based on image obser-
vations [15, 16, 23, 24, 28, 30, 31, 36, 38, 47, 53, 62, 68]. More
specifically, Neural Radiance Fields (NeRFs) [7, 38, 45, 66]
show impressive performance on novel view synthesis by
optimizing volumetric radiance fields on a large number of
posed multi-view images.

Various subsequent works addressed rendering speed
[14, 40, 65], training size requirement [7, 39, 66], or pose
requirements [34,45] for NeRF. The seminal work of Plenox-
els showed that the MLP network is not necessary for
quick optimization and volumetric rendering of the radi-
ance fields. However, the current paradigm is still an opti-
mization paradigm where a single scene representation is
optimized without any generalization to new scenes/objects.
In this work, we treat Sparse Radiance Fields (SRFs) as a 3D
data structure and try to learn a generative model (dubbed
SuRFNet) on the distribution of sparse-voxel radiance fields
conditioned on a few images to generalize to unseen 3D
shapes (see Figure 1).

In order to train deep learning models on 3D data to
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Posed Multi-View Datasets
Attribute SRN [51] DTU [21] NMR [43] RTMV [52] SPARF (ours)

Number of Classes 2 N/A 13 N/A 13
Number of Scenes/Objects 3,511 124 43,756 2,000 39,705
Image Resolution 128 1,200 64 1,600 400
Number of Radiance Fields 0 0 0 2,000 1,072,008
Real/Synthetic synthetic real synthetic synthetic synthetic
View Setup sphere random circle hemisphere sphere
Total Number of Images 265,550 4,235 1,050,144 300,000 17,073,150
Views per Model 50 N/A 24 N/A 430
Dataset Size (GB) 5.8 1 33 2,520 3,432

Table 1. Comparison of Different Posed Multi-View Datasets. We compare some of the widely used posed multi-view datasets to our
large-scale SPARF dataset.

generalize to unseen examples, the dataset size should be
in tens of thousands of samples [6, 58]. However, current
posed multi-view datasets are not suitable for leveraging the
power of deep networks as can be seen in Table 1. The image
resolution is either too low (e.g. 64×64 in [43]), the samples
do not follow a controlled setup [21, 48], or lack diversity in
the samples and classes [51]. For these reasons, we construct
a large and high-resolution dataset (SPARF) of posed multi-
view images from ShapeNet [6] that correspond to the same
13 classes originally used in the NMR dataset [43], but with
an order of magnitude more images and pixels (17M vs. 1M
images and 400×400 vs. 64 × 64 pixels). We also provide
more than one million optimized sparse radiance fields of
spherical harmonics and densities that allow for the novel
view synthesis of the 40K models using Plenoxels [14].

The idea of learning a prior (2D CNN/ViT) on radi-
ance fields in order to enhance the few-view setup of novel
view synthesis is previously investigated by several works
[29, 49, 66]. However, we propose SuRFNet to directly
learn from the 3D sparse radiance fields, by optimizing
partial SRFs from the few images and training a general-
izable network that converts these partial SRFs to complete
SRFs in a supervised fashion. Such a 3D setup benefits
from structured 3D learning, creating a 3D prior that guar-
antees multi-view consistency, especially when rendering
from out-of-distribution views. Also, this 3D sparse voxel
setup benefits from the advancements in fast volume render-
ing [14, 40], allowing for end-to-end deep learning pipelines
that harness volume rendering. To the best of our knowledge,
our SURFNet is the first model that learns to generate 3D
radiance fields for unseen objects at test time with only a
few/single views by learning from the distribution of radi-
ance fields in 3D.

Contributions: (i) To facilitate the application of deep learn-
ing on radiance fields, we provide a new Posed Multi-view
dataset (SPARF) that is an order of magnitude larger than
others (around 40K 3D models). The dataset includes a to-

tal of one million optimized Sparse Radiance Fields (SRFs)
with multiple sparse voxel resolutions, which allows for
high-quality novel view synthesis. (ii) We propose a novel
architecture and a pipeline (SuRFNet) equipped with a spe-
cialized SRF-loss to generate voxel-based radiance fields
from a few images based on learning to complete partial ra-
diance fields. SuRFNet improves the performance of uncon-
strained novel view synthesis based on few views compared
to state-of-the-art methods.

2. Related Work
Learning 3D Shapes. Several works aim to predict
the geometry of 3D shapes given several input images,
by directly optimizing the vertices of a template mesh
through differentiable projections or through fitting a net-
work [15, 16, 36, 53, 68]. Other works use MLPs as a deep
prior to the optimized mesh [18, 36, 56]. On the other
hand, some methods try to learn the distribution of 3D
meshes by optimizing 3D generators independent of how the
meshes look when rendered, solely based on the available
3D data and heuristic regularizers [10, 19, 41, 46]. Point
cloud methods offer an alternative to the mesh complex
topology by learning generative models on the point clouds
themselves, e.g. by using an Auto Encoder [1, 61] or a GAN
framework [1, 27]. The implicit representation paradigm
offers an alternative to meshes for smooth and detailed
shape representation. These methods learn a continuous
implicit representation of shapes by learning the Signed
Distance Functions or Occupancy of the object through
MLPs [3–5, 30, 35, 42, 44, 50, 64]. While we learn a 3D
representation in this work, the scope focuses on the quality
of the rendering from novel views and not 3D reconstruction.
Neural Radiance Fields (NeRFs). NeRFs [38] proved to
be a successful popularizing in implicit volume represen-
tation and novel view synthesis. They define an implicit
field and learn an MLP that predicts the RGB and density
value of that 3D field given a set of posed images. NeRFs
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Figure 2. SPARF: a Large Dataset for 3D Shapes Radiance
Fields and Novel Views Synthesis.

shoot rays on the volume and integrate the predictions to
obtain individual pixel values. This formulation, however,
has many drawbacks including large memory and compute
requirements, inability to model dynamic scenes, posed im-
age requirements, and the limitation to small 3D objects or
rooms [34, 42, 45, 65, 66]. To address the speed limitation,
PlenOctreeNeRF [65] stores the precomputed RGB, density,
and spherical harmonics in the 3D volume as an Octree data
structure for fast inference. Plenoxels [14] optimize the den-
sity and spherical harmonics on sparse voxels with a TV loss
and perform ray marching for rendering from novel views.
Similarly, INGP [40] uses multi-resolution voxel hashing to
perform a real-time rendering of radiance fields, demonstrat-
ing that the redundancy of the MLP in NeRFs. We build on
these observations and build the SPARF dataset of sparse
voxel radiance fields in order to facilitate learning on these
SRFS as a 3D data structure instead of just a side outcome
of a volumetric optimization.

Few-Image NeRFs. To address the original NeRF’s re-
quirement of many posed images, several methods were
proposed. The seminal work PixelNerf [66] is the first to
reduce the image data requirements in order to learn a NeRF
by using a trained CNN prior that can allow for transferable
representation between scenes. Similarly, MVSNerf [7, 17],
AutoRF [39], and ShaRF [49] learn a CNN prior to general-
ize across scenes. IBRNet [54] learns to render novel views
based on neighboring views and optimized neural volume
representation. More recently, VisionNerf [29] proposes to
use a ViT [12] to extract global features from the input im-
ages to enhance the capability of the NeRF MLP to predict
the radiance field when one image is used as input. Unlike
these works, we propose SuRFNet to directly learn from the
3D sparse radiance fields. Such a 3D setup benefits from
structured 3D learning, creating a 3D prior that guarantees
multi-view consistency while benefiting from the speed of
recent voxel-based methods. A concurrent work by Guo et
al. [17] learns a 3D prior based on a perceptual loss, but does
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Figure 3. SPARF Distribution. We show the distribution of
classes in SPARF and how the one million partial and whole SRFs
are distributed. The numbers are equally distributed on three voxel
resolutions: 512,128. and 32.

not use 3D supervision and only uses dense voxels ( limiting
the pipeline to the low resolution of 643 ).
Datasets for novel view synthesis. Several datasets were
proposed to support the task of novel view synthesis. NeRF
[38] introduced 8 synthetic scenes with 360-degree views.
The rapid progress that followed this work was attributed
to algorithmic developments rather than scaling up the data.
However, for the successful application of deep learning,
a large amount of data is necessary for improved gener-
alization. Wang et al. [55] introduced a synthetic dataset
including Google Scanned Objects. Other datasets for train-
ing multi-view algorithms include DTU [21], LLFF [37],
Tanks and Temples [25], Spaces [13], RealEstate10K [70],
SRN [51], Transparent Objects [20], ROBI [60], CO3D [48],
SAPIEN [59], and BlendedMVS [63]. Recently, RTMV [52]
introduced a ray-traced posed multi-view dataset with 2000
scenes and high-resolution images. Unfortunately, the cur-
rent posed multi-view datasets commonly used in NeRF
research are either small in image resolution or the number
of posed images (SRN [51] and NMR [43]), small in the
number of scenes/shapes and classes (Synthetic NeRFs [38]),
or lack structure (DTU [21] and RTMV [52]). A detailed
multi-attribute comparison is provided in Table 1.

3. SPARF: a Large Dataset of 3D Shape Radi-
ance Fields (SRFs)

One of the goals of this work is to learn to generate high-
quality Sparse Radiance Fields (SRFs) in one forward pass
of a deep network to enable fast novel view synthesis. In
order to do this, harnessing the power of deep networks
would require a large dataset of SRFs in a controlled setup.
We describe the details of SPARF in the following section.

3.1. Dense Posed Multi-view Image Dataset
The first step in collecting the desired large high-quality

radiance field dataset is to collect a synthetic posed multi-
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Figure 4. SRFs: The optimized Sparse Radiance Fields in SPARF. A total of one million SRFs have been collected in SPARF, including
on multiple voxel resolutions: 32 (top), 128 (middle), and 512 (bottom).

view dataset. We use ShapeNet Core 55 [6] as the data of
choice for 3D shapes. For rendering, we used Pyglet [2]
API through Trimesh library [11]. The renderer is based on
OpenGL [57] rasterizer to render over 17 million images of
around 40,000 shapes from 13 different classes at a high res-
olution of 400× 400. Every shape is rendered equidistantly
from 400 views distributed in a spherical configuration sur-
rounding the object, including from the bottom (see Figure 2
for an example). An additional 20 views are rendered from
random views from the same distance as test views for novel
view synthesis tasks. Furthermore, an additional 10 views
are rendered randomly from random distances bounded by
a reasonable range, such that at least a part of the object is
guaranteed to be visible. This last set is aimed at robustness
purposes to test whether novel view synthesis methods can
generalize to out-of-distribution posed views. More details
about the rendering setup, including lighting and materials
are provided in supplementary material.

3.2. Multi-Resolution 3D SRFs
Sparse Radiance Field (SRF) can be defined as a voxel

grid of dimension 1 + d, where d is the dimension of ra-
diance colors ρi,j,k ∈ Rd at that specific (i, j, k) indexed
voxel in addition to one dimension for density αi,j,k ∈ R.
We assume that the grid is of size H in each of the three
dimensions: X ∈ RH3×(1+d). Since the SRF is sparse, it
can be represented with the COO format [9] as a set of M
tuples of positive integer coordinates c ∈ Z+ and features
f ∈ Rd+1 with the sparsity of 1− M

H3 as follows:

Xnon-empty = {(cm, fm)}Mm=1 (1)

The ordering of the set of tuples is arbitrary, but the features
fm consist of the density αi,j,k and radiance colors ρi,j,k at
that location cm = (i, j, k). For the radiance field colors, we
use the spherical harmonics proposed in Plenoxels [14] for
view-dependent learning of radiance common in NeRFs [38].
The SRF can be viewed as a distillation of the NeRF MLP
into sparse voxels for efficient optimization and volume ren-
dering. In many 3D object tasks, a coarse-to-fine approach is
followed, demanding multiple resolutions. Hence, we collect
the SPARF with multiple resolutions H ∈ {32, 128, 512},
as shown in Figure 4. We used an adaptation of Plenox-
els [14] to collect the dataset of a total of one million SRFs
as we detail next. In order to scale up the Plenoxels opti-
mization for this huge number of shapes and variants, we
utilize a large number of images in the SPARF dataset to
reduce the iterations to a minimum number while maintain-
ing a high average PSNR across the dataset for the collected
SRFs across the multiple resolutions. A total of 200K GPU
hours are used in the optimization process to collect SPARF.
highly detailed 3D meshes can be extracted easily from the
collected SRFs as can be seen in Figure 5.

3.3. Representing Images with Partial 3D Radiance
Fields

In addition to collecting the “whole" part of SPARF that
utilized all 400 images for every shape in optimizing the
SRFs, we collect “partial" SRFs. These are SRFs optimized
on only a small number of images (1 or 3) randomly sam-
pled from all 400 images, resulting in multiple partial SRF
variants of that shape (see Figure 6). However, the same 3D
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SRF Renderings Extracted Mesh

Figure 5. Extracting 3D Meshes from SRFs. Since SPARF
and SuRFNet live on the 3D voxel’s space, extracting the mesh is
straightforward with one pass of MarchingCubes [32].

object can have multiple partial SRFs depending on the input
images optimized. Therefore, we collect multiple variants
of this partial SRFs for every object. We use these partial
SRFs as input to our training pipeline.

4. Learning to Generate SRFs
Unlike previous methods that try to embed priors in learn-

ing to generate radiance fields from a few images (e.g. Pix-
elNerf [66] and VisionNerf [29]), we distill the views into
a 3D SRF and then perform the learning in the 3D sparse
voxel space. SuRFNet offers an alternative and a new way to
learn novel view synthesis by learning to generate the entire
3D radiance field based on a small observation of the scene.
Such a 3D setup benefits from structured 3D learning, thus
creating a 3D prior that guarantees multi-view consistency,
especially when rendering from out-of-distribution views
(as we show in Section 5.3). The input to the pipeline is
the input partial SRFs from Section 3.3, where the goal is
learning a generalizable network that converts partial SRFs
to whole SRFs as can be seen in Figure 7.

4.1. SuRFNet: Sparse Radiance Fields Network
3D sparse conv. We leverage the Minkowski Net [9] as the
3D sparse convolution network of choice. However, this type
of sparse convolution is not designed for generative tasks
of fine-grained details, which are the scope of this work. In
a typical sparse convolution learning paradigm, the output
itself is not a sparse voxel grid, but rather a point cloud or a
continuous 3D prediction. In our setup, the output itself is a
sparse voxel grid of radiance fields that have irregular struc-
tures and low-density components that cannot be seen when
they are volume rendered yet they affect the SRF learning.
We use residual connections in a U-Net form of Minkowski
Net F with l modules, where each module consists of 3
sparse convolutions layers with strides s.
Challenges of Learning SRFs. Even though the setup ap-
pears to be a simple encoder-decoder fully supervised learn-
ing setup from partial SRF to whole SRF, learning SRFs is
much more challenging in reality. As a data structure, SRF
is an irregular volumetric representation that does not neces-
sarily reflect the underlying 3D shape/scene, as it is a result
of the optimization of posed images into volume. Many of
the non-empty voxels have low density and do not affect

Whole SRF Partial (3 Views) Partial (1 View)

Figure 6. Whole vs. Partial SRFs. The partial SRFs are used in-
stead of the few images that generated them as input to the learning
pipeline to generate the whole SRFs

the volume rendering, but include color information that can
confuse the network. Also, small errors in predicting the
densities or radiance colors can result in large distortions in
the rendered images, hurting overall novel view synthesis
performance. Furthermore, the nature of the SRFs is closer
to being a surface representation (usually the densities are
low inside the object), which makes a useful signal to create
the shape extremely sparse in the high-resolution 3D volume
space. Another problem with sparse convolution is that a
vanishing gradient is more imminent than in typical learning
paradigms in 3D. The usual sparsity in our setup is ∼ 99%,
and misalignment between the input SRF coordinates and
output SRF coordinates can further harm the gradients and
affect the learning process. In order to tackle these issues,
we propose three specialized losses detailed next.

4.2. SRF-Loss
Density loss. The goal of the density loss is to create a dense
surface. We propose the following binary cross-entropy loss
on the predicted densities α as follows:

Lα

(
X , X̂

)
= −(ŷ log(y) + (1− ŷ) log(1− y))

s. t. ŷ = 1

(
S(X̂α) > αdense

)
, y = S (F(X ))α

(2)

where X , X̂ are the input and output SRFs respectively (as
defined in Eq (1) ), and αdense is the density threshold distin-
guishing dense voxels from the air (usually set to 0). The
sampling function S samples points in the grid space where
the loss on the outputs y is defined. Defining the loss only
on the non-empty voxels will leave many radiance clouds in
the output, deteriorating the quality of the rendered images
from the output SRF.
Q-Gaussian loss sampling. One of the challenges in work-
ing with voxels of high resolution (e.g. 512) is that the
learning of the operations in sparse voxels cannot involve
densifying the voxels to the original resolution (e.g. 5123),
due to prohibitive memory requirements. This is why the
sampling function S in Eq (2) is of utmost importance
in guiding the training of SuRFNet. We sample at ran-
dom coordinates centered at the center of the voxel grid
S : c ∼ Q

(
N (H2 ,

Hσ2

2 I)
)

, where H = (H,H,H) is the
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Partial SRF X
3D Sparse 
ConvNet F

Input Image I

Whole SRF X

Ray Marching

^

GT Image Iφ

Perceptual Loss LR

Density & color Loss L𝞪 + L𝞺

Rendered Images 
Rφ(F(X))

Figure 7. SuRFNet: Learning to Generate Whole Radiance
Fields from Partial Views. We process the input images into
partial SRFs X before learning a sparse convolutional network
to generate the whole SRF. A perceptual loss is employed on the
rendered images from poses ϕ to enhance the perceptual quality of
the generated SRF. The whole SRF X̂ is used to 3D-supervise the
SRF generation with density and radiance color losses.

voxel grid resolution vector, I is the identity matrix, σ is
a hyperparameter determining the spread of the loss, and
Q : R3 → Z+3 is the quantization-and-cropping function
of coordinates that ensure the output coordinates are inte-
gers within bounds c ∈ [0, 1, ...,H − 1]3. We discuss more
details about S and alternative configurations in Section 5.2.
Radiance color loss. To ensure the output SRFs follow the
ground truth optimized SRFs in radiance color, we follow
the simple L1 loss on the radiance colors ρ. However, as
mentioned earlier, some of the non-empty voxels contain low
density and will not be seen in the rendering and can contain
any random colors. Therefore, we mask these non-empty
low-density voxels out of the L1 loss as follows:

Lρ

(
X , X̂

)
= ∥MαF(X )ρ −MαX̂ρ∥1

s. t. Mα = 1(X̂α > αdense)
(3)

Perceptual loss. Using only the 3D radiance color loss in Eq
(3) ignores the rendering quality of the generated SRF, and
would make it sensitive to hyperparameters (see Figure 11).
Hence, we introduce an online perceptual loss that would
volume render the generated SRF during training from M
random views that come from the same ground truth image
poses ϕ, and an L1 loss is defined between the generated
images and the ground truth posed images Iϕ.

LR

(
X
)
= ∥Rϕ (F(X ))− Iϕ∥1, (4)

where Rϕ is the fast volume rendering function that renders
SRFs from poses ϕ using the trilinear interpolation between
voxels proposed in Plenoxels [14].

The final loss to train the network F would be combining
the three losses in Eq (2,3,4) as follows:

LossF = Lα + λρLρ + λRLR, (5)

where λρ, λR are hyperparameters to control the radiance
colors compared to the density predictions. The network
is trained on all N whole SRFs X̂ in the dataset, while the
input SRFs X are randomly chosen from several partial SRFs
created by the same number of images from those shapes.

SPARF (ours) SRN [51] NMR [43]

Figure 8. SPARF vs. other Datasets . SPARF offers a large-
scale high-resolution dataset compared to other posed multi-view
datasets. We show the same chair here on SPARF, SRN, and NMR
(please zoom-in for differences). This highlights the huge quality
gap between SPARF and other ShapeNet-based datasets.

5. Experiments
5.1. Collecting SPARF

The engineering aspect of collecting, storing, and orga-
nizing the one million SRFs with multiple resolutions is as
challenging as training properly on SRFs. In order to do
that in manageable time and memory, while maintaining
high quality in the optimized samples, a set of strategies is
employed. The dimension of the radiance color d is chosen
to be d = 3 × 4 = 12 of 4 spherical harmonics factors of
RGB channels for view-dependent SRF and d = 3× 1 = 3
for fixed RGB colors of the SRF. Since the input partial
SRFs are noisy, we use d = 3 while the final output SRFs
use d = 12 for high-quality image generation. Using fewer
Spherical Harmonics components (from 9 to 4 per RGB
channel) reduces the optimization space by 40% and time
by 10%, while maintaining the same PSNR. Using RGB as
colors instead of SH factors reduces PSNR by ∼ 1 dB, space
by 80%, and time by 20%. Running Plenoxels [14] for fewer
iterations (3×12K) reduces the time by 30% while maintain-
ing the same PSNR. Using 400 views/shapes in SPARF to
optimize the SRFs keep the time manageable in optimization
(∼ 4 minutes for the 512 resolution) while maintaining high
PSNR (∼ 30dB). When saving the SRFs, we only save the
set of coordinates (integers) and float features (densities and
radiance components). A total of four variants of the partial
SRFs are collected for all the resolutions and the partials use
1 and 3 images. The anatomy of the distribution of classes
and SRFs in SPARF is presented in Figure 3. More details
about SPARF and visualizations of some of its samples are
available in the supplementary material.

5.2. Training Setup
Dataset. We pick our SPARF for the task of predicting
whole SRFs for the purpose of novel view synthesis. The
other datasets (SRN [51] and NMR [43]) are too small or
low in resolution, which prevents optimizing high-quality
radiance fields (see Figure 8).
Evaluation metrics. Following the previous novel view
synthesis works [14,29,66], we use PSNR, SSIM, and LPIPS
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SPARF Classes
Baselines chair watercraft rifle display lamp speaker cabinet bench car airplane sofa table phone mean

Plenoxels [14] (1V) 9.2 11.1 11.7 8.0 13.6 8.2 10.4 10.5 7.1 12.8 9.3 9.9 8.3 10.0
Plenoxels [14] (3V) 10.7 13.3 14.9 9.7 15.8 10.4 12.4 11.6 7.1 14.6 11.6 10.8 9.7 11.7
PixelNerf [66] (1V) 13.3 16.3 16.7 11.9 17.6 11.3 14.5 14.6 13.2 19.2 13.3 13.2 13.2 14.5
PixelNerf [66] (3V) 13.5 16.6 16.9 12.2 17.9 11.9 14.9 14.8 13.4 19.4 13.4 13.3 13.3 14.7
VisionNeRF [29] (1V) 13.0 15.6 15.8 11.7 16.7 11.2 14.0 14.3 12.7 17.8 13.3 13.0 12.6 14.0

SuRFNet (ours) (1V) 11.6 16.2 17.0 12.0 16.2 12.6 17.0 13.5 16.6 17.5 14.1 10.1 15.3 14.6
SuRFNet (ours) (3V) 15.3 18.3 18.8 15.0 19.0 16.6 20.0 15.6 16.6 18.5 18.1 14.9 17.8 17.3

Table 2. SPARF Benchmark on Out-of-distribution View Synthesis. We compare the validation PSNR of some of the widely used novel
view synthesis techniques on the SPARF dataset for the generalization of novel view synthesis beyond a single example and on view tracks
completely different from the ones seen in training views. One view (1V) and three views (3V) inputs are reported.

[69] as metrics to evaluate the synthesis. However, one
key difference between our work and previous ones is that
our setup is a learning setup (with training and validation),
while previous works treat it as an optimization problem.
Most previous works on novel view synthesis try to only
generalize the generated views on the same shape, while
we aim to generalize across shapes and across views. We
treat the collected whole SRFs as ground truth labels for
the input few images from the training set. We consider
the validation PSNR, SSIM, and LPIPS of the input images
at the validation SRF set of shapes (on the test images of
those shapes) as the main evaluation metrics. Also, we
report validation accuracy = validation PSNR with test few images

whole SRF optimzation’s PSNR and
propose it as a new metric to evaluate such a learning setup
of SRFs. Furthermore, as we describe in Section 3, SPARF
has 10 posed Out-Of-Distribution (OOD) images for every
3D shape to evaluate the robustness of novel view synthesis
methods in the unconstrained setup. We report these OOD
PSNR, SSIM, LPIPS, and Accuracy as well.
Basleines. We use PixelNeRF [66] , Plenoxels [14], and
VisionNerf [29] as the main basleines for our work. Our
SuRFNet network has two sizes: large (87 million parame-
ters) and small (13 million parameters). More details can be
found in the supplementary material.

5.3. Results
We show qualitative results of generating novel views

from single input images on unseen shapes in Figure 9. We
also show qualitative comparisons in Figure 10. The gen-
erated SRFs can More visualizations and detailed results
can be found in the supplementary material. We present a
summary of the quantitive evaluations next, where SuRFNet
achieves state-of-the-art results on unconstrained novel view
synthesis from one or few images on unseen shapes.
SPARF View-Generalization benchmark. In Table 2,
we report the average PSNR results on the validation set
of SPARF for different methods on unseen shapes during
training on all 13 different object classes and on out-of-
distribution views. It shows that our SuRFNet can generalize
to out-of-distribution views on unseen shapes during test

Figure 9. SuRFNet: Generating High-Resolution Radiance
Fields. We show some volume-rendered sequences based on our
SuRFNet voxel radiance field outputs (512 resolution), given only
3 images of each shape.

time, surpassing state-of-the-art PixelNeRF [66] and Vision-
Nerf [29]. Visual comparisons can be found in Figure 10.
As can be seen from those results, the learned 3D prior re-
sults in multi-view consistency, especially when rendering
from out-of-distribution views. More results can be found in
supplementary material.

6. Analysis and Insights
6.1. Ablation Study

We ablate different components of SuRFNet’s architec-
tures and the loss configuration choices and report the results
in Tables 3 and 4. More ablations on the network, loss,
and hyperparameters of training SuRFNet can be found in
supplementary material.
Training SuRFNet. Results show that increasing the size of
the network (from 13M to 87M parameters ) helps improve
generalization accuracy. Also, they show the importance of
the loss components proposed in Eq (5). The use of only
density loss creates a reasonable dense shape but without
colors. While combining the density loss with the 3D radi-
ance color loss creates colorful objects, it does not perform
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Input View Target Ground Truth SuRFNet (ours) PixelNeRF [66] VisionNeRF [29]

Figure 10. Qualititve Comparisons. We show different render from our SuRFNet outputs generated from a single image compared to other
methods (pixel-Nerf [66], and VisionNerf [29] ) and whole SRF ”GT" renderings. Note that the predicted two views lay outside the training
views distribution (zoomed in randomly). This test highlights the weakness of the 2D-based baselines [29, 66] outside the training track,
while our 3D approach maintains multi-view consistency everywhere.

3D Backbone Loss components Results
Small Large (Lα) (Lρ) (LR) Val. Acc.

✓ - ✓ ✓ - 65.2
✓ - ✓ ✓ ✓ 65.7
- ✓ ✓ ✓ - 66.4
- ✓ ✓ ✓ ✓ 68.2

Table 3. Ablation Study. We ablate different components of
in SuRFNet (3D backbone and SRF-Loss) and report validation
accuracy of car class.

1-view 3-view

Strategy PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
uniform 20.03 0.94 0.10 21.00 0.94 0.09
Q-Gaus. 20.55 0.93 0.09 21.83 0.94 0.08

Table 4. Effect of Loss Sampling Strategy.We study the effect of
Loss sampling strategy (uniform vs. Q-Gaussian) on airplane class.

well in the task of novel view synthesis as it does not respect
how the object looks, and any deviations from the labeled
radiance colors can cause large image distortions. Please see
Figure 11 for the importance of the perceptual loss.
Loss Sampling. We study the effect of the sampling strategy
with a different number of input images at test time on the
performance of SuRFNet in Table 4. It shows that using
a uniform sampling strategy depletes the learning capacity
of the network and can degrade performance. The effect is
more evident when the number of views is one, where the
partial SRFs are more sparse and the training is delicate.

6.2. Speed and Compute Cost
To assess the contributions of the SuRFNet pipeline, we

study the time and memory requirements of each element in
the pipeline. We record in Table 5 the number of floating-
point operations (GFLOPs) and the runtime of a forward
pass (including rendering) for a single output image from
one input image on Titan RTX GPU.

output w/o LR output w/ LR whole SRF

Figure 11. Effect of the Perceptual Loss LR. Adding a perceptual
loss on volume-rendered images during training SuRFNet insures
the rendered images remain closer to how they should be rendered,
as the 3D radiance colors supervision won’t guarantee the rendering
quality. (left): without perceptual loss , (middle): with the loss.

Network Network Network Parameters Rendering
FLOPs (G) Inference (ms) Number (M) Speed (FPS)

PixelNeRF [66] 7.3 5.33 21.8 1.2
VisionNerf [29] 33.7 12.5 68.6 1.2
SuRFNet (small) ∼15 14.4 13.4 15
SuRFNet (large) ∼100 90.0 87.3 15

Table 5. Time and Memory Requirements. We assess the compu-
tational cost of the main components studied

7. Conclusions and Future Work
We propose a large-scale dataset SPARF of sparse radi-

ance fields that include around one million SRFs and 17
million posed images of 3D shapes. The dataset aims to
move the community in the direction of treating radiance
fields as a 3D data structure, instead of optimization results
and MLP fitting. Leveraging the utility of SPARF, we pro-
pose a SuRFNet pipeline to train a conditional generative
model to generate SRFs from few input images (1 or 3) dis-
tilled as partial SRFs. SuRFNet allows generating radiance
fields from single images of unseen shapes, which allows
for rendering high-quality images from novel views, reach-
ing state-of-the-art performance in unconstrained novel view
synthesis compared to other methods.

One crucial limitation in this work is the large amount
of compute and memory necessary to create, store, and
process SRFs, especially at high-resolution voxel grids. This
creates a bottleneck in training, developing, and building
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on SRFs.Developing efficient methods to work and learn
from sparse voxel grids would be a viable plan moving
forward in order to develop deep and large models in
this space, as well as, leveraging popular (slow) genera-
tive models (e.g. diffusion models) on 3D radiance fields.
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A. Detailed Formulations

A.1. Sparse Convolutions

Sparse convolutions are a variant of standard convolutions
that are used in deep learning. In a sparse convolution, only
a subset of the input elements is used in the computation,
which allows for more efficient use of computation resources
and can improve the performance of the convolutional neural
network. To perform a sparse convolution, we first define
a set of indices that specify which input elements should
be used in the convolution. This set of indices is called the
"support" of the convolution. We then use these indices to se-
lect the relevant input elements and compute the convolution
using these elements. This is typically done by applying a
filter to the selected input elements and summing the results
to produce the output of the convolution.

In the simplest 1 D case, let x be the input tensor, w
be the convolutional filter, and c be the support of the con-
volution (i.e. the set of indices specifying which elements
of x should be used in the convolution). The output of the
sparse convolution, y, can be computed as: y = x[c] ∗ w
where ∗ denotes the convolution operation, and x[c] is the
subset of elements from x specified by the support c. This
equation applies the convolutional filter w to the selected
input elements and sums the results to produce the output of
the convolution. For more detailed formulation and imple-
mentation of the Sparse convolutions we used in our work,
please refer to MinkowskiNetwork [9].

B. Detailed Setup

B.1. SPARF Dataset

All the rendered images are of 400× 400 resolution with
4 channels (RGB + alpha channel for background). SPARF
has three main splits for every 3D shape: training views (400
views), test views (20 views), and an OOD “hard" views
(10 views) as can be shown in Figure 22. Regarding the
collected SRFs, Plenoxels [14] is used as the base module.
The spherical harmonics dimension of the whole SRFs is
d = 4× 3 = 12, while for partial SRFs, it is d = 1× 3 = 3.
Most of the hyperparameters used in optimizing the SRFs
are the default ones proposed in the Plenoxels paper [14] (as
can be seen in the attached code under Svox2/opt/opt-py).
However, the following hyperparameters were engineered in
order to scale up the optimization and maintain the quality
of the SRFs ( as can be seen in Figure 23, and 24). Run-
ning Plenoxels [14] for fewer iterations (3×12K) reduces
the time by 30% while maintaining the same PSNR. Using
400 views/shapes in SPARF to optimize the SRFs keep the
time manageable in optimization (∼ 4 minutes for the 512
resolution) while maintaining high PSNR (∼ 30dB). When
saving the SRFs, we only save the set of coordinates (inte-
gers) and float features (densities and radiance components).

SRF Voxewl Nb. of Nb. of
Type Resolution Variants SRFs

Partial

32
4×1-view 158,816
4×3-view 158,816

128
4×1-view 158,816
4×3-view 158,816

512
4×1-view 158,816
4×1-view 158,816

Whole
32 1×400-view 39,704
128 1×400-view 39,704
512 1×400-view 39,704

Total - - 1,072,008

Table 6. SPARF Anatomy. We show the distribution of the one
million SRFs collected in SPARF between multiple resolutions and
between whole and partial SRFS.

Whole SRF Partial (3 Views) Partial (1 View)

Figure 12. Whole vs. Partial SRFs. The partial SRFs are used in-
stead of the few images that generated them as input to the learning
pipeline to generate the whole SRFs

The upsampling iteration of Plenoxels is set to 1×12K for
faster convergence. The distribution of the collected dataset
is detailed in Table 6. More examples of the whole vs. partial
SRFs collected in SPARF can be found in Figure 12. The
whole SRFs are easily convertible to high-quality meshes
using Marching Cubes [32] as shown in Figure 13.

B.2. SuRFNet Training

We use a voxel resolution of 1283 of the SPARF dataset
in most of the learning experiments and visualizations in
this work, unless otherwise clearly stated. This choice is to
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SRF Renderings Extracted Mesh

Figure 13. Extracting 3D Meshes from SRFs. Since SPARF
and SuRFNet live on the 3D voxel’s space, extracting the mesh is
straightforward with one pass of MarchingCubes [32].

reduce the computational cost of training the heavy pipeline
and to facilitate the development of proper learning methods
on SRFs. The input SRF is normalized with a fixed value
of 10,0000 for the density and 10 for the colors, to ensure
the distribution lies within -1 to 1. The Q-Gaussian std σ
is set to 0.444 (studied more in Section C). The strides for
the SuRFNEt are all set 2, while the network depth l = 3
modules. The batch size for training is 14 when A100 GPUs
are used and 6 when V100 GPUs are used. The training satu-
rates at 100 epochs. The optimizer used is AdamW [33] with
a learning rate of 0.01, a momentum of 0.9, a weight decay
of 1e− 5, and a learning rate exponential decay rate of 0.99.
The hyperparameters λR, λα, λρ are all set independently to
each class, where a different network is trained on each class
separately. Most classes have λα = 30.0, λρ = 1.0, λR. We
did not prune the output sparse voxel as this leads to harming
performance most of the time and increase the problem of
vanishing gradients. The background color of the rendered
images Rϕ (F(X )) is masked out from the perceptual loss
and the density component α of the output SRF is also not
affected by the perceptual loss, as this can cause excessive
densities around the object, leading to deteriorating the SRF
output perceptuality. During training with the perceptual
loss, three randomly selected images from three different
ϕ as used as labels for the three rendered images from the
output Rϕ (F(X )). The SuRFNet is jointly predicting the
density and radiance of spherical harmonics colors, but with
different heads. More setup details can be found in the
attached code and analyzed further in Section C.

For a fair comparison to the baselines PixelNeRF and

Figure 14. Shiny Objects Corrupts SRFs:. Optimizing SRFs on
shiny objects with a reflective material (left) results in distorted
radiance fields (right). These distorted SRFs (of 76 shapes in total)
were separated from the main classes in SPARF.

VisionNerf ( which use 64 × 64 resolution), we upsample
their resolution at inference at test poses while using their
pretrained weights of the NMR dataset. The upsampling is
using the bicubic sampling of the Pytorch Transforms library.
Retraining the methods from scratch on the high resolution
400×400 is computationally prohibitive. We train a separate
model for each class, to maintain high-quality generation of
3D SRFs.

C. Additional Analysis
C.1. Shiny Objects

Some of the rendered objects have reflective materials,
resulting in distorted optimized radiance fields for these
shapes despite using all of the views. We separate these
distorted SRFs (only 76 shapes in total) from the SPARF
dataset (see Figure 14).

C.2. Effect of Dataset Size

We study the effect of increasing the dataset size (Whole
SRFs and Partial SRFs) on the generalization performance
of SuRFNet in Figure 16,15. It shows that as the dataset size
increase ( normalized the number of shapes in each class
), the generalization performance increase. This scalability
effect underlines the importance of SPARF. However, as can
be seen from these two figures, partial SRFs scalability is
more important than increasing whole SRFs, which justifies
collecting 4 variants per resolution ( as detailed in Table 6).

C.3. Loss Ablation Study

For the density threshold αdense defined in Eq 2 and 3, the
validation accuracies of SuRFNet on car class are 13, 14.7,
67.8, 67, 67, 67.2, 62.5 for the values of -0.01, -0.001, 0,
0.001, 0.003, 0.01, 0.03 of αdense respectively. The hyperpa-
rameter σ which governs the spread of the Q-Gaussian loss
is studied as follows. the validation accuracies of SuRFNet
on airplane class are 52, 70.4, 71.7, 72.1, 72.2, 72.4, 72.3
for the values of 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1.0 of σ
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SPARF Classes
Baselines chair watercraft rifle display lamp speaker cabinet bench car airplane sofa table phone mean

Plenoxels [14] (1V) 10.1 12.1 12.6 8.7 14.7 8.7 10.9 11.4 7.7 14.0 9.7 10.5 9.5 10.8
Plenoxels [14] (3V) 10.8 13.3 15.6 9.7 16.2 10.1 12.1 12.1 9.0 15.4 11.4 10.8 10.2 12.1
PixelNeRF [66] (1V) 10.8 14.1 14.2 9.0 15.6 9.2 10.5 12.4 10.1 15.7 11.1 10.6 11.1 11.9
PixelNeRF [66] (3V) 11.0 14.1 14.2 9.3 15.7 9.4 10.6 12.7 10.1 15.7 11.3 10.9 11.4 12.0
VisionNeRF [29] (1V) 16.5 18.4 18.5 15.1 19.3 13.2 16.1 16.3 13.8 21.8 15.1 14.8 14.0 16.4

SuRFNet (ours) (1V) 15.7 15.5 19.1 14.1 18.5 14.5 18.7 15.6 18.1 20.3 16.3 14.1 17.4 16.8
SuRFNet (ours) (3V) 18.6 20.7 20.9 17.1 21.2 18.5 21.7 17.6 18.9 21.9 20.4 16.7 20.0 19.5

Table 7. SPARF Benchmark on Novel View Synthesis (Normal Test). We compare the validation PSNR of some of the widely used novel
view synthesis techniques on the SPARF dataset for the generalization of novel view synthesis beyond a single example and on the normal
testing-views tracks similar to the ones seen in training views. One view (1V) and three views (3V) inputs are reported.

Percentage of Partial  SRF Variants (%)

Va
lid

at
io

n 
A

cc
ur

ac
y 

(%
)

58

60

62

64

66

68

70

25 50 75 100

1 View (OOD) 3 Views (OOD) 3 Views 1 View

Figure 15. Scaling-Up Training on SRFs: Partial SRFs. As
the training data (partial SRFs) of radiance fields increase, the
generalization improves, as can be seen in the car class here. The
3-view and 1-view metrics are reported with test and OOD metrics.
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Figure 16. Scaling-Up Training on SRFs: Whole SRFs. As the
training data of radiance fields increase, the generalization improves
across different classes in SPARF.

respectively. The number of coordinates c sampled in the
Q-Gaussian loss is proportional to the number of coordinates
in the input SRFs with multiplier K = 40. For different val-
ues of this multiplier 1, 5, 10, 20, 40, 80, 200, the validation
accuracies of SuRFNet trained on airplane class are 72.2,

Figure 17. Rare Cases of Faulty Textures. Some objects in
ShapeNet [6] have doubled textrures in some parts, leading to
faulty renderings.

output w/o LR output w/ LR whole SRF

Figure 18. Effect of the Perceptual Loss LR. Adding a perceptual
loss on volume-rendered images during training SuRFNet insures
the rendered images remain closer to how they should be rendered,
as the 3D radiance colors supervision won’t guarantee the rendering
quality. (left): without perceptual loss , (middle): with the loss.

72.7, 72.9, 72.5, 71.8, 71.7, and 71.6 respectively.

C.4. Faulty Textures

In some rare instance of the shapes in ShapeNet [6], some
objects have doubled textures in some areas. This occurs in
less than 1% of the data and leads the renderer to render the
background instead in these areas (highlighted with green).
See Figure 17 for examples of these cases.

D. Additional Results
Additional results of normal test tracks benchmark of

SPARF are presented in Table 7. Please see figures 21 and
22 for differences between the normal train/test track and
the OOD hard track. More comparisons and generations are
provided in Figures 26,27,25.
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SPARF (ours) SRN [51] NMR [43]

Figure 19. SPARF vs. other Datasets . SPARF offers a large-scale high-resolution dataset compared to other posed multi-view datasets.
Note that SRN [51] has only cars and chairs, while NMR [43] and SPARF has 13 classes.
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Figure 20. SPARF: a Large Dataset for 3D Shapes Radiance Fields and Novel Views Synthesis.
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Train Test Hard Test (OOD)

Figure 21. Cameras Setups for Different SPARF Splits. Here, we show different visualizations of the camera setups of the three splits of
SPARF. (Train): 400 determinsitic spherical views, (Test): 20 random spherical views, (hard OOD Test): 10 random views.

Train/Test Track

OOD Hard Test Track

Train/Test Track

OOD Hard Test Track

Figure 22. SPARF Splits. SPARF has three main splits for every 3D shape: training views (400 views), test views (20 views), and OOD
“hard" views (10 views) as can be shown in the examples above.
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Figure 23. SRFs: The optimized Sparse Radiance Fields in SPARF 1. A total of one million SRFs have been collected in SPARF,
including on multiple voxel resolutions: 32 (top), 128 (middle), and 512 (bottom) for every 3D shape.
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Figure 24. SRFs: The optimized Sparse Radiance Fields in SPARF 2. A total of one million SRFs have been collected in SPARF,
including on multiple voxel resolutions: 32 (top), 128 (middle), and 512 (bottom) for every 3D shape.
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Ground Truth Whole SRFs Generated SRFs (5123 resolution)

Figure 25. SuRFNet: Generating High-Resolution Radiance Fields. We show some volume-rendered sequences based on our SuRFNet
voxel radiance field outputs (512 resolution), given only 3 images of each shape. This demonstrates the capability of SuRFNet to generate
high-resolution sparse voxel SRFs. Note that, here, SURFNet is overfitting on a small dataset in these examples and is not meant for shape
generalization.
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Input View PixelNeRF [66] VisionNeRF [29] SuRFNet (ours) Ground Truth

Figure 26. Qualititve Comparisons 1. We show different render from our SuRFNet outputs generated from a single image compared to
other methods (pixel-Nerf [66], and VisionNerf [29] ) and whole SRF ”GT" renderings. Note that the predicted views are outside the training
views distribution (zoomed in randomly). This test highlights the weakness of the 2D-based baselines [29, 66] outside the training track,
while our 3D approach maintains multi-view consistency everywhere.
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Input Views PixelNeRF [66] VisionNeRF [29] SuRFNet (ours) Ground Truth

Figure 27. Qualititve Comparisons 2. We show different render from our SuRFNet outputs generated from 3 input images compared to
other methods (pixel-Nerf [66], and VisionNerf [29] ) and whole SRF ”GT" renderings. Note that the predicted views are outside the training
views distribution (zoomed in randomly). This test highlights the weakness of the 2D-based baselines [29, 66] outside the training track,
while our 3D approach maintains multi-view consistency everywhere.
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